Log in

Growth and reproduction in Pinus sibirica ecotypes from Western Siberia in a common garden experiment

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

Experimental studies of forest trees’ intraspecies variations in reproduction and reproductive allocation are scarce. Such studies are relevant for the Siberian stone pine (Pinus sibirica Du Tour) because of the high value of its seeds and wood. To reveal growth and reproductive variations among Siberian stone pine ecotypes in relation to the climate of the provenances, we examined their growth height, crown diameter, stem volume, number of female cones, and male shoots, at different ages, in the clonal common garden experiment established in 1996 in Russia. Scions were obtained from 11 to 19 randomly selected 100–170-year old trees in each of four natural stands located on the latitudinal transect on the West Siberian plain. They were grafted onto local 4 year old Siberian stone pine seedlings and grown in a common garden experiment comprising nine plots near the southern margin of the species’ natural range. Growth traits were affected by climatic conditions in the provenances: generally, a warmer climate was associated with more rapid growth. Variation among the ecotypes at the graft age of 12 years was not large; however, it significantly increased by the age of 19. The relationship was ambiguous between reproductive traits and the climate of the provenances. The proportion of female, male and bisexual clones varied among years in all ecotypes. Most of the clones had only female cones; male clones were less common. The southern ecotype showed rapid growth and formed the lowest number of male shoots and female cones. The northern ecotype showed the weakest growth and moderate cone bearing, along with abundant male flowering. The intermediate ecotypes had a moderate growth and the highest numbers of cones, along with moderate numbers of male shoots. These results demonstrate the fundamental differences in the patterns and nature of variation in growth and reproductive traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Averina ES, Seewald G, Müller RH, Radnaeva LD, Popov DV (2010) Nanostructured lipid carriers (NLC) on the basis of Siberian pine (Pinus sibirica) seed oil. Pharmazie 65(1):25–31

    CAS  PubMed  Google Scholar 

  • Bazzaz FA, Ackerly DD, Reekie EG (2000) Reproductive allocation in plants. In: Fenner M (ed) Seeds, the ecology of regeneration in plant communities, 2nd edn. CABI Publishing, Oxon, pp 1–30

    Google Scholar 

  • Bond BJ, Czarnomski NM, Cooper C, Day ME, Greenwood MS (2007) Developmental decline in height growth in Douglas-fir. Tree Physiol 27:441–453. doi:10.1093/treephys/27.3.441

    Article  PubMed  Google Scholar 

  • Byram TD, Lowe WJ, McGriff JA (1986) Clonal and annual variation in cone production in loblolly pine seed orchards. For Sci 32(4):1067–1073

    Google Scholar 

  • Cannell MGR (1985) Dry matter partitioning in tree crops. In: Cannell MGR, Jackson JE (eds) Attributes of trees as crop plants. Institute of Terrestrial Ecology, Huntingdon, pp 160–193

    Google Scholar 

  • Chuine I, Rehfeldt GE, Aitken SN (2006) Height growth determinants and adaptation to temperature in pines: a case study of Pinus contorta and Pinus monticola. Can J For Res 36(5):1059–1066. doi:10.1139/x06-005

    Article  Google Scholar 

  • Climent J, Prada MA, Calama R, Chambel MR, de Ron DS, Alía R (2008) To grow or to seed: ecotypic variation in reproductive allocation and cone production by young female Aleppo pine (Pinus halepensis, Pinaceae). Am J Bot 95(7):833–842. doi:10.3732/ajb.2007354

    Article  PubMed  Google Scholar 

  • Cramp S, Perrins CM (1993) The birds of the Western Palearctic, vol VII. Oxford University Press, Oxford, p 577

    Google Scholar 

  • Cremer KW (1992) Relations between reproductive growth and vegetative growth of Pinus radiata. For Ecol Manag 52(1–4):179–199. doi:10.1016/0378-1127(92)90501-Y

    Article  Google Scholar 

  • DeWald LE, Kolanoski KM (2017) Conserving genetic diversity in ecological restoration: a case study with ponderosa pine in northern Arizona, USA. New For 48:337–361. doi:10.1007/s11056-016-9565-1

    Article  Google Scholar 

  • Drozdov II (1998) Silviculture of introduced conifers. MGUL, Moscow, p 137 (in Russian)

  • FAO (1998) Seeds, fruits and cones. Chapter 8 in: Non-wood forest products from conifers. Series non-wood forest products 12. FAO—Food and Agriculture Organization of the United Nations, Rome. http://www.fao.org/docrep/X0453E/X0453e12.htm

  • Farjon A (2010) A handbook of the world’s conifers (2 vols). Koninklijke Brill NV, Leiden, The Netherlands, p 526. doi:10.1163/9789047430629

  • Gurnell J, Anderson M (1996) Evolutionary links between squirrels and conifer seed phenology in high latitude forests. In: Mathias ML, Santos-Reis M, Amori C, Libois R, Mitchell-Jones A, Saint-Girons MC (eds) Proceedings of the I European Congress of mammalogy. Museu Bocage, Lisboa, Portugal, pp 237–249

  • Hebda AM, Wachowiak W, Skrzyszewski O (2017) Long-term growth performance and productivity of Scots pine (Pinus sylvestris L.) populations. Acta Soc Bot Pol 86(1):3521. doi:10.5586/asbp.3521

    Article  Google Scholar 

  • Ilyichev YuN (2010) The prospects of selection of Pinus sibirica plus trees. Khvoynyye borealnoy zony 17(1–2):83–86 (in Russian with English abstract)

    Google Scholar 

  • Ilyichev YuN, Shuvaev DN (2016) Condition of Stone pine Pinus sibirica Du Tour clonal stands in the Republic of Altai: conservation and breeding prospects. Sibirskij Lesnoj Zurnal (Siberian Journal of Forest Science) 5:33–44 (in Russian with English abstract)

    Google Scholar 

  • Iroshnikov AI (1996) Status and conservation of tree genepools in the forests of Russia. In: Proceedings of a workshop “Sustainable forest genetic resources programmes in the Newly Independent States of the former USSR”. Belovezha, Belarus, pp 34–38

  • Ivetić V, Devetaković J, Nonić M, Stanković D, Šijačić-Nikolić M (2016) Genetic diversity and forest reproductive material—from seed source selection to planting. iForest 9:801–812. doi:10.3832/ifor1577-009

    Article  Google Scholar 

  • Jayawickrama KJS, Jett JB, McKeand SE (1991) Rootstock effects in grafted conifers: a review. New For 5:157–173. doi:10.1007/BF00029306

    Article  Google Scholar 

  • Johnsen KH, Seiler JR, Major JE (1996) Growth, shoot phenology and physiology of diverse seed sources of black spruce: II. 23-year-old field trees. Tree Physiol 16(3):375–380. doi:10.1093/treephys/16.3.375

    Article  CAS  PubMed  Google Scholar 

  • Kelly D, Sork VL (2002) Mast seeding in perennial plants: why, how, where? Annu Rev Ecol Evol Syst 33:427–447. doi:10.1146/annurev.ecolsys.33.020602.095433

    Article  Google Scholar 

  • King DA (1990) The adaptive significance of tree height. Am Nat 135(6):809–828. doi:10.1086/285075

    Article  Google Scholar 

  • Koenig WD, Knops JM (2000) Patterns of annual seed production by Northern Hemisphere trees: a global perspective. Am Nat 155(1):59–69. doi:10.1086/303302

    Article  CAS  PubMed  Google Scholar 

  • Kurnaev SF (1973) Forest vegetation regionalization of the USSR. Nauka, Moscow, p 220 (in Russian)

  • Kuznetsova GV (2007) The variation among climatypes of Siberian stone pine (Pinus sibirica Du Tour) in the south of Krasnoyarskiy kray. Khvoynyye borealnoy zony 24(4–5):423 (in Russian)

    Google Scholar 

  • Ledig FT, Smouse PE, Hom JL (2015) Postglacial migration and adaptation for dispersal in pitch pine (Pinaceae). Am J Bot 102(12):2074–2091. doi:10.3732/ajb.1500009

    Article  PubMed  Google Scholar 

  • Lu P, Parker WH, Cherry M, Colombo S, Parker WC, Man R, Roubal N (2014) Survival and growth patterns of white spruce (Picea glauca [Moench] Voss) rangewide provenances and their implications for climate change adaptation. Ecol Evol 4(12):2360–2374. doi:10.1002/ece3.1100

    Article  PubMed  PubMed Central  Google Scholar 

  • Lukkarinen AJ, Ruotsalainen S, Nikkanen T, Peltola H (2010) Survival, height growth and damages of Siberian (Larix sibirica Ledeb.) and Dahurian (Larix gmelinii Rupr.) larch provenances in field trials located in southern and northern Finland. Silva Fenn 44(5):727–747. doi:10.14214/sf.120

    Article  Google Scholar 

  • Martínez-Vilalta J, Vanderklein D, Mencuccini M (2007) Tree height and age-related decline in growth in Scots pine (Pinus sylvestris L.). Oecologia 150(4):529–544. doi:10.1007/s00442-006-0552-7

    Article  PubMed  Google Scholar 

  • Mencuccini M, Martínez-Vilalta J, Vanderklein D, Hamid HA, Korakaki E, Lee S, Michiels B (2005) Size-mediated ageing reduces vigour in trees. Ecol Lett 8(11):1183–1190. doi:10.1111/j.1461-0248.2005.00819.x

    Article  CAS  PubMed  Google Scholar 

  • Morozov A (2004) Survey of illegal forest felling activities in Russia (forms and methods of illegal cuttings). M: Greenpeace Russia. http://old.forest.ru/eng/publications/illegal/

  • Mutke S, Pastor A, Picardo A (2013) Toward a traceability of European pine nuts “from forest to fork”. In: Mutke S, Piqué M, Calama R (eds) Mediterranean stone pine for agroforestry. Zaragoza, CIHEAM/FAO/INIA/IRTA/CESEFOR/CTFC, pp 105–109

    Google Scholar 

  • Ne’eman G, Goubitz S, Werger MJA, Shmida A (2011) Relationships between tree size, crown shape, gender segregation and sex allocation in Pinus halepensis, a Mediterranean pine tree. Ann Bot 108(1):197–206. doi:10.1093/aob/mcr104

    Article  PubMed  PubMed Central  Google Scholar 

  • Novoselceva AI (1980) On the application of forest genetics and forest tree breeding research to practical forest seed production. Silva Fenn 14(1):28–31

    Article  Google Scholar 

  • Obeso JR (2002) The costs of reproduction in plants. New Phytol 155(3):321–348. doi:10.1046/j.1469-8137.2002.00477.x

    Article  Google Scholar 

  • Oleksyn J, Tjoelker MG, Reich PB (1998) Adaptation to changing environment in Scots pine populations across a latitudinal gradient. Silva Fenn 32(2):129–140. doi:10.14214/sf.691

    Article  Google Scholar 

  • Oleksyn J, Reich PB, Tjoelker MG, Chalupka W (2001) Biogeographic differences in shoot elongation pattern among European Scots pine populations. For Ecol Manag 148(1–3):207–220. doi:10.1016/S0378-1127(00)00537-5

    Article  Google Scholar 

  • Olesen PO (1978) On cyclophysis and topophysis. Silvae Genet 27(5):173–178

    Google Scholar 

  • O’Reilly GJ, Farmer RE (1991) Phenotypic variation in cone and seed characteristics of tamarack in Northwestern Ontario. Tree Plant Notes 42(3):18–22

    Google Scholar 

  • Parker SR, White TL, Hodge GR, Powell GL (1998) The effects of scion maturation on growth and reproduction of grafted slash pine. New For 15(3):243–259

    Article  Google Scholar 

  • Potter KM, Jetton RM, Bower A, Jacobs DF, Man G, Hipkins VD, Westwood M (2017) Banking on the future: progress, challenges and opportunities for the genetic conservation of forest trees. New For 48:153–180. doi:10.1007/s11056-017-9582-8

    Article  Google Scholar 

  • Rawat K, Bakshi M (2011) Provenance variation in cone, seed and seedling characteristics in natural populations of Pinus wallichiana A.B. Jacks (Blue Pine) in India. Ann For Res 54(1):39–55. doi:10.15287/afr.2011.96

    Google Scholar 

  • Sánchez-Humanes B, Sork VL, Espelta JM (2011) Trade-offs between vegetative growth and acorn production in Quercus lobata during a mast year: the relevance of crop size and hierarchical level within the canopy. Oecologia 166(1):101–110. doi:10.1007/s00442-010-1819-6

    Article  PubMed  Google Scholar 

  • Santos-del-Blanco L, Zas R, Notivol E, Chambel MR, Majada J, Climent J (2010) Variation of early reproductive allocation in multi-site genetic trials of Maritime pine and Aleppo pine. For Syst 19(3):381–392. doi:10.5424/fs/2010193-9109

    Google Scholar 

  • Santos-del-Blanco L, Climent J, González-Martínez SC, Pannell JR (2012) Genetic differentiation for size at first reproduction through male versus female functions in the widespread Mediterranean tree Pinus pinaster. Ann Bot 110(7):1449–1460. doi:10.1093/aob/mcs210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shikov AN, Pozharitskaya ON, Makarov VG, Makarova MN (2008) Anti-inflammatory effect of Pinus sibirica oil extract in animal models. J Nat Med 62(4):436–440. doi:10.1007/s11418-008-0254-z

    Article  PubMed  Google Scholar 

  • Sniezko RA, Kegley A, Savin DP (2017) Ex situ genetic conservation potential of seeds of two high elevation white pines. New For 48:245–261. doi:10.1007/s11056-017-9579-3

    Article  Google Scholar 

  • Thomas SC (2011) Age-related changes in tree growth and functional biology: the role of reproduction. In: Meinzer FC, Lachenbruch B, Dawson TE (eds) Size- and age-related changes in tree structure and function. Springer, Dordrecht, pp 33–64

    Chapter  Google Scholar 

  • Vilà-Cabrera A, Martínez-Vilalta J, Retana J (2014) Variation in reproduction and growth in declining Scots pine populations. Perspect Plant Ecol Evol Syst 16(3):111–120. doi:10.1016/j.ppees.2014.02.005

    Article  Google Scholar 

  • Wahid N, Bounoua L (2013) The relationship between seed weight, germination and biochemical reserves of maritime pine (Pinus pinaster Ait.) in Morocco. New For 44(3):385–397. doi:10.1007/s11056-012-9348-2

    Article  Google Scholar 

  • Wei R-P, Han SD, Dhir NK, Yeh FC (2004) Population variation in growth and 15-year-old shoot elongation along geographic and climatic gradients in black spruce in Alberta. Can J For Res 34:1691–1702. doi:10.1139/X04-050

    Article  Google Scholar 

  • Wendling I, Trueman SJ, Xavier A (2014) Maturation and related aspects in clonal forestry—part II: reinvigoration, rejuvenation and juvenility maintenance. New For 45(4):473–486

    Article  Google Scholar 

  • Xu Yu, Cai N, He B, Zhang R, Zhao W, Mao J, Duan A, Li Yu, Woeste K (2016) Germination and early seedling growth of Pinus densata Mast. provenances. J For Res 27(2):283–294. doi:10.1007/s11676-015-0186-x

    Article  CAS  Google Scholar 

  • Zemlyanoy AI, Ilyichev YuN, Tarakanov VV (2010) Interclonal variability of the seed productivity elements of Pinus sibirica: prospects of breeding. Khvoynyye borealnoy zony 17(1–2):77–82 (in Russian)

    Google Scholar 

  • Zhuk EA (2010) Shoot morphogenesis and crown structure of Siberian stone pine mountain ecotypes: ex situ experiment. Vestnik Tomskogo gosudarstvennogo universiteta. Biologia 10(2):89–96 (in Russian)

    Google Scholar 

  • Zhuk EA, Goroshkevich SN (2012) Factors of intraspecies variation of Siberian stone pine in latitudinal and altitudinal transects. Khvoynyye borealnoy zony 27(3–4):61–66 (in Russian)

    Google Scholar 

Download references

Funding

This work was supported by Russian Foundation for Basic Research (Grant Number 15-04-03924) and Russian Academy of Sciences (Program of Basic Research in State Academies, Theme 52.2.6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeniya Zhuk.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuk, E., Goroshkevich, S. Growth and reproduction in Pinus sibirica ecotypes from Western Siberia in a common garden experiment. New Forests 49, 159–172 (2018). https://doi.org/10.1007/s11056-017-9611-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-017-9611-7

Keywords

Navigation