Log in

On Quantum States with a Finite-Dimensional Approximation Property

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

We consider a class (convex set) of quantum states containing all finite rank states and infinite rank states with the sufficient rate of decreasing of eigenvalues (in particular, all Gaussian states). Quantum states from this class are characterized by the property (called the FA-property) that allows to obtain several results concerning finite-dimensional approximation of basic entropic and information characteristics of quantum systems and channels.

We obtain a simple sufficient condition of the FA-property. We show that all the states with the FA-property form a face of the convex set of all quantum states that is contained within the face of all states with finite von Neumann entropy (the non-coincidence of these two faces follows from the recent result of S. Becker, N. Datta and M.G. Jabbour).

We obtain uniform approximation results for characteristics depending on a pair (channel, input state) and for characteristics depending on a pair (channel, input ensemble). We establish the uniform continuity of the above characteristics as functions of a channel w.r.t. the strong convergence provided that the FA-property holds either for the input state or for the average state of input ensemble.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The support \(\textrm{supp}\rho\) of a state \(\rho\) is the closed subspace spanned by the eigenvectors of \(\rho\) corresponding to its positive eigenvalues.

  2. \(\rho_{k}\) is the marginal state of \(\rho_{1..n}\) corresponding to the space \(\mathcal{H}_{k}\).

  3. The validity of Weyl’s inequality for trace class operators follows, f.i., from Theorem 5.10 in [20].

  4. The class \(L(C,T,D)\) can be extended by replacing the binary entropy \(h_{2}\) in (20) by any nonnegative function vanishing as \(p\to 0\). All the below results remain valid for functions from the class \(L(C,T,D)\) extended in this way.

  5. \(\chi(\cdot)\) denotes the Holevo quantity of an ensemble defined in (5).

  6. The weak convergence of a sequence \(\{\mu_{n}\}\subset\mathcal{P}(\mathcal{H})\) to a measure \(\mu_{0}\) in \(\mathcal{P}(\mathcal{H})\) means that \(\lim_{n\to+\infty}\int f(\rho)\mu_{n}(d\rho)=\int f(\rho)\mu_{0}(d\rho)\) for any continuous bounded function on \(\mathfrak{S}(\mathcal{H})\) [26, 34, 35].

  7. The definition of \(\beta_{G}^{E}\) is presented at the end of Section 2.

  8. These functions are introduced at the begin of Section 4.1.

  9. These functions are introduced at the begin of Section 4.2.

  10. It follows from the proof of Proposition 22 in [32] that the condition \(||\omega^{2}_{AB}-\omega^{1}_{AB}||_{1}=\varepsilon<1\) in this proposition can be replaced by the condition \(||\omega^{2}_{AB}-\omega^{1}_{AB}||_{1}\leq\varepsilon<1\).

  11. We assume that \(f_{\Phi}(\rho)=0\) if \(\Phi(\rho)=0\).

REFERENCES

  1. A. Wehrl, ‘‘General properties of entropy,’’ Rev. Mod. Phys. 50, 221–250 (1978).

    Article  MathSciNet  Google Scholar 

  2. S. Becker, N. Datta, and M. G. Jabbour, ‘‘From classical to quantum: Uniform continuity bounds on entropies in infinite dimensions,’’ ar**v: 2104.02019 (2021).

  3. M. E. Shirokov, ‘‘Approximation of multipartite quantum states and the relative entropy of entanglement,’’ ar**v: 2103.12111 (2021).

  4. A. S. Holevo, Quantum Systems, Channels, Information. A Mathematical Introduction (De Gruyter, Berlin, 2012).

    MATH  Google Scholar 

  5. A. S. Holevo, Statistical Structure of Quantum Theory (Springer, Berlin, 2001).

    Book  Google Scholar 

  6. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000).

    MATH  Google Scholar 

  7. M. M. Wilde, Quantum Information Theory (Cambridge Univ. Press, Cambridge, 2013).

    Book  Google Scholar 

  8. S. Khatri and M. M. Wilde, ‘‘Principles of quantum communication theory: A modern approach,’’ ar**v: 2011.04672.

  9. G. Lindblad, ‘‘Expectation and entropy inequalities for finite quantum systems,’’ Comm. Math. Phys. 39, 111–119 (1974).

    Article  MathSciNet  Google Scholar 

  10. A. S. Holevo, ‘‘Bounds for the quantity of information transmitted by a quantum communication channel,’’ Probl. Inf. Transm. (USSR) 9, 177–183 (1973).

    Google Scholar 

  11. M. E. Shirokov, ‘‘Entropy characteristics of subsets of states. I,’’ Izv. Math. 70, 1265–1292 (2006).

    Article  MathSciNet  Google Scholar 

  12. M. E. Shirokov, ‘‘Adaptation of the Alicki–Fannes–Winter method for the set of states with bounded energy and its use,’’ Rep. Math. Phys. 81, 81–104 (2018).

    Article  MathSciNet  Google Scholar 

  13. A. S. Holevo, ‘‘On complementary channels and the additivity problem,’’ Probab. Theory Appl. 51, 133–143 (2005).

    MathSciNet  Google Scholar 

  14. M. E. Shirokov and A. V. Bulinski, ‘‘On quantum channels and operations preserving finiteness of the von Neumann entropy,’’ Lobachevskii J. Math. 41 (12), 2383–2396 (2020).

    Article  MathSciNet  Google Scholar 

  15. M. E. Shirokov, ‘‘Uniform continuity bounds for information characteristics of quantum channels depending on input dimension and on input energy,’’ J. Phys. A 52, 014001 (2019).

    Article  MathSciNet  Google Scholar 

  16. R. Nair, ‘‘Quantum-limited loss sensing: Multiparameter estimation and Bures distance between loss channels,’’ Phys. Rev. Lett. 121, 230801 (2018).

    Article  Google Scholar 

  17. I. Bengtsson and K. Zyczkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement (Cambridge Univ. Press, Cambridge, 2017).

    Book  Google Scholar 

  18. A. Wehrl, ‘‘How chaotic is a state of a quantum system,’’ Rep. Math. Phys. 6, 15–28 (1974).

    Article  MathSciNet  Google Scholar 

  19. P. Harremoes, ‘‘Information topologies with applications,’’ in Entropy, Search, Complexity, Ed. by I. Csiszár et al., Vol. 16 of Bolyai Society Mathematical Studies (Springer, Berlin, 2007).

  20. A. S. Markus, ‘‘The eigen- and singular values of the sum and product of linear operators,’’ Russ. Math. Surv. 19 (4), 91–120 (1964).

    Article  Google Scholar 

  21. R. T. Rockafellar, Convex Analysis (Princeton Univ. Press, Princeton, 1996).

    Google Scholar 

  22. M. E. Shirokov, ‘‘Advanced Alicki–Fannes–Winter method for energy-constrained quantum systems and its use,’’ Quantum Inf. Process. 19, 164 (2020).

    Article  MathSciNet  Google Scholar 

  23. E. R. Loubenets, ‘‘Quantum stochastic approach to the description of quantum measurements,’’ J. Phys. A: Math. Gen. 34, 7639–7675 (2001).

    Article  MathSciNet  Google Scholar 

  24. E. R. Loubenets, ‘‘Quantum stochastics. New approach to the description of quantum measurements,’’ Found. Prob. Phys. 13, 246–256 (2001).

    Article  MathSciNet  Google Scholar 

  25. F. Buscemi, M. Hayashi, and M. Horodecki, ‘‘Global information balance in quantum measurements,’’ Phys. Rev. Lett. 100, 210504 (2008).

    Article  MathSciNet  Google Scholar 

  26. A. S. Holevo and M. E. Shirokov, ‘‘Continuous ensembles and the capacity of infinite-dimensional quantum channels,’’ Theory Probab. Appl. 50, 86–98 (2005).

    Article  MathSciNet  Google Scholar 

  27. G. G. Amosov, ‘‘Remark on the additivity conjecture for a quantum depolarizing channel,’’ Probl. Inform. Transmis. 42 (2), 69–76 (2006).

    Article  MathSciNet  Google Scholar 

  28. A. S. Holevo and M. E. Shirokov, ‘‘Mutual and coherent information for infinite-dimensional quantum channels,’’ Probl. Inform. Transmis. 46, 201–218 (2010).

    Article  MathSciNet  Google Scholar 

  29. M. Takeoka, S. Guha, and M. M. Wilde, ‘‘The squashed entanglement of a quantum channel,’’ IEEE Trans. Inform. Theory 60, 4987–4998 (2014).

    Article  MathSciNet  Google Scholar 

  30. M. Christandl and A. Winter, ‘‘Squashed entanglement - an additive entanglement measure,’’ J. Math. Phys. 45, 829–840 (2003).

    Article  MathSciNet  Google Scholar 

  31. R. Tucci, ‘‘Entanglement of distillation and conditional mutual information,’’ ar**v: quant-ph/0202144.

  32. M. E. Shirokov, ‘‘Squashed entanglement in infinite dimensions,’’ J. Math. Phys. 57, 3220 (2016).

    Article  MathSciNet  Google Scholar 

  33. M. J. Donald, ‘‘Further results on the relative entropy,’’ Math. Proc. Cambridge Philos. Soc. 101, 363–373 (1987).

    Article  MathSciNet  Google Scholar 

  34. P. Billingsley, Convergence of Probability Measures (Wiley, New York, 1968).

    MATH  Google Scholar 

  35. V. I. Bogachev, Measure Theory (Springer, Berlin, 2007).

    Book  Google Scholar 

  36. O. Oreshkov and J. Calsamiglia, ‘‘Distinguishability measures between ensembles of quantum states,’’ Phys. Rev. A 79, 032336 (2009).

    Article  Google Scholar 

  37. A. Winter, ‘‘Energy-constrained diamond norm with applications to the uniform continuity of continuous variable channel capacities,’’ ar**v: 1712.10267.

  38. M. M. Wilde, ‘‘Strong and uniform convergence in the teleportation simulation of bosonic Gaussian channels,’’ Phys. Rev. A 97, 062305 (2018).

    Article  Google Scholar 

  39. M. E. Shirokov, ‘‘Strong convergence of quantum channels: Continuity of the Stinespring dilation and discontinuity of the unitary dilation,’’ J. Math. Phys. 61, 082204 (2020).

    Article  MathSciNet  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to A.S. Holevo and to the participants of his seminar ‘‘Quantum probability, statistic, information’’ (the Steklov Mathematical Institute) for useful discussion. I am also grateful to S. Becker, N. Datta and M.G. Jabbour for resolving the open question stated in the preliminary version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Shirokov.

Additional information

(Submitted by A. S. Holevo)

APPENDIX

APPENDIX

Lemma 1. Let \(f\) be a function on \(\mathfrak{S}(\mathcal{H})\) satisfying inequality (20) with some parameters \(a_{f}\) and \(b_{f}\) then for any positive trace-non-increasing linear map \(\Phi:\mathfrak{T}(\mathcal{H})\rightarrow\mathfrak{T}(\mathcal{H})\) the functionFootnote 11

$$f_{\Phi}(\rho)=||\Phi(\rho)||_{1}f\left(\frac{\Phi(\rho)}{||\Phi(\rho)||_{1}}\right)$$

on \(\mathfrak{S}(\mathcal{H})\) satisfies inequality (20) with the same parameters \(a_{f}\) and \(b_{f}\).

Proof. Let \(\rho\) and \(\sigma\) be arbitrary states and \(\lambda\) any number in \((0,1)\). Let \(p=||\Phi(\rho)||_{1}\) and \(q=||\Phi(\sigma)||_{1}\). If \(pq=0\) then inequality (20) trivially holds for the function \(f_{\Phi}\). If \(pq\neq 0\) then the validity of the l.h.s. of inequality (20) for the function \(f\) implies

$$\displaystyle f_{\Phi}(\lambda\rho+\bar{\lambda}\sigma)\displaystyle=(\lambda p+\bar{\lambda}q)f\left(\frac{\lambda p}{\lambda p+\bar{\lambda}q}\frac{\Phi(\rho)}{p}+\frac{\bar{\lambda}q}{\lambda p+\bar{\lambda}q}\frac{\Phi(\sigma)}{q}\right)$$
$${}\geq\lambda pf\left(\frac{\Phi(\rho)}{p}\right)+\bar{\lambda}qf\left(\frac{\Phi(\sigma)}{q}\right)-a_{f}(\lambda p+\bar{\lambda}q)h_{2}\left(\frac{\lambda p}{\lambda p+\bar{\lambda}q}\right)$$
$${}=\lambda f_{\Phi}(\rho)+\bar{\lambda}f_{\Phi}(\sigma)-a_{f}(\lambda p+\bar{\lambda}q)h_{2}\left(\frac{\lambda p}{\lambda p+\bar{\lambda}q}\right),\quad\bar{\lambda}=1-\lambda.$$

So, to prove the l.h.s. of inequality (20) for the function \(f_{\Phi}\) it suffices to show that

$$(x+y)h_{2}\left(\frac{x}{x+y}\right)\leq h_{2}(x)$$

for all positive numbers \(x\) and \(y\) such that \(x+y\leq 1\). This inequality follows from the concavity of the binary entropy, since the probability distribution \(\{x,1-x\}\) is the convex mixture of the probability distributions \(\{x/(x+y),y/(x+y)\}\) and \(\{0,1\}\) with the coefficients \(x+y\) and \(1-x-y\).

The r.h.s. of inequality (20) for the function \(f_{\Phi}\) is proved similarly. \(\Box\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirokov, M.E. On Quantum States with a Finite-Dimensional Approximation Property. Lobachevskii J Math 42, 2437–2454 (2021). https://doi.org/10.1134/S1995080221100206

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080221100206

Keywords:

Navigation