Log in

Biosynthesis and Characterization of Monodisperse Gold Nanoparticles using Mulberry Leaf Extract at Room Temperature

  • CHEMICAL PHYSICS OF NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

In this research, spherical and small size gold nanoparticles were successfully prepared by a cost-effective, eco-friendly green approach using mulberry leaf extract as both reducing and stabilizing agent. The reducing potential of mulberry leaf extract was studied for the synthesis of gold nanoparticles without adding any external reducing agents. The formation of gold nanoparticles was confirmed by the change of color. The prepared gold nanoparticles were characterized by UV-visible absorption spectroscopy, dynamic light scattering, scanning electron microscope, transmission electron microscopy, fourier transform infrared and powder X-ray diffraction. The absorbance peak which found at 560 nm in UV-vis spectroscopy demonstrated the generation of gold nanoparticles. The fourier transform infrared elucidated that the gold nanoparticles were capped with various functional groups from extracts, kee** them from agglomeration and oxidation. The X-ray diffraction results illustrated that the particles were highly crystalline in nature. The transmission electron microscopy and scanning electron microscope showed the particles were small and spherical. The effect of reaction temperature, amount of chloroauric acid solution and extracts was also investigated. The results demonstrated that these parameters play vital roles in the production of gold nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. K. J. Lee, Y. I. Lee, I. K. Shim, et al., J. Colloid Interface Sci. 304, 92 (2006). https://doi.org/10.1016/j.jcis.2006.08.037

    Article  CAS  PubMed  Google Scholar 

  2. Y. Wang, X. He, K. Wang, et al., Colloids Surf. B Biointerfaces 73, 75 (2009). https://doi.org/10.1016/j.colsurfb.2009.04.027

    Article  CAS  PubMed  Google Scholar 

  3. V. K. Shukla, R. P. Singh, and A. C. Pandey, J. Alloys Compd. 507, L13 (2010). https://doi.org/10.1016/j.jallcom.2010.07.156

    Article  CAS  Google Scholar 

  4. J. Das, M. Paul Das, and P. Velusamy, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 104, 265 (2013). https://doi.org/10.1016/j.saa.2012.11.075

    Article  CAS  PubMed  Google Scholar 

  5. C. Dong, X. Zhang, H. Cai, et al., J. Mol. Liq. 196, 135 (2014). https://doi.org/10.1016/j.molliq.2014.03.009

    Article  CAS  Google Scholar 

  6. B. Kumar, K. Smita, L. Cumbal, et al., J. Saudi Chem. Society 21, S475 (2017). https://doi.org/10.1016/j.jscs.2015.01.009

    Article  CAS  Google Scholar 

  7. Z. Zaheer, E. S. Aazam, and S. A. Kosa, J. Mol. Liq. 220, 364 (2016). https://doi.org/10.1016/j.molliq.2016.04.089

    Article  CAS  Google Scholar 

  8. P. Pofali, S. Shirolikar, L. Borde, et al., Mater. Res. Express 5, 045004 (2018).

    Article  Google Scholar 

  9. V. Abdi, I. Sourinejad, M. Yousefzadi, et al., Iranian J. Sci. Technol., Trans. A: Sci. 43, 2163 (2019) 2163. https://doi.org/10.1007/s40995-019-00739-9

    Article  Google Scholar 

  10. M. Pisárčik, M. Lukáč, J. Jampílek, et al., J. Mol. Liq. 314, 113683 (2020). https://doi.org/10.1016/j.molliq.2020.113683

    Article  CAS  Google Scholar 

  11. C. Dong, F. Cheng, X. Zhang, et al., Rare Met. Mater. Eng. 47, 1089 (2018). https://doi.org/10.1016/S1875-5372(18)30125-5

    Article  CAS  Google Scholar 

  12. C. Dong, H. Cai, X. Zhang, et al., Physica E: Low-dimensional Systems and Nanostructures 57, 12 (2014). https://doi.org/10.1016/j.physe.2013.10.025

    Article  CAS  Google Scholar 

  13. K. H. Lee, S. C. Rah, and S.-G. Kim, J. Sol-Gel Sci. Technol. 45, 187–193 (2008).

    Article  CAS  Google Scholar 

  14. D. Philip, Phys. E: Low-dimens. Syst. Nanostruct. 42, 1417 (2010). https://doi.org/10.1016/j.physe.2009.11.081

    Article  CAS  Google Scholar 

  15. Q. Lin and Z. Sun, Optik 122, 1031 (2011). https://doi.org/10.1016/j.ijleo.2010.06.025

    Article  CAS  Google Scholar 

  16. R. Parameshwaran, S. Kalaiselvam, R. Jayavel, Mater. Chem. Phys. 140, 135 (2013). https://doi.org/10.1016/j.matchemphys.2013.03.012

    Article  CAS  Google Scholar 

  17. G. Madhumitha, G. Elango, and S. M. Roopan, J. Sol-Gel Sci. Technol. 73, 476 (2014). https://doi.org/10.1007/s10971-014-3591-2

    Article  CAS  Google Scholar 

  18. A. Kumar, R.S. Mazumdar, and T. Dhewa, Asian Pacific J. Tropical Disease 6, 223 (2016). https://doi.org/10.1016/S2222-1808(15)61018-0

    Article  Google Scholar 

  19. A. Vanaamudan, H. Soni, and P. Padmaja Sudhakar, J. Mol. Liq. 215, 787 (2016). https://doi.org/10.1016/j.molliq.2016.01.027

    Article  CAS  Google Scholar 

  20. A. A. Nesmelov, S. A. Zavyalov, S. N. Malakhov, et al., Russ. J. Phys. Chem. B 17, 826 (2023). https://doi.org/10.1134/S1990793123040140

    Article  CAS  Google Scholar 

  21. C. Dong, X. Zhang, H. Cai, et al., Rare Metal Mater. Eng. 45, 261 (2016). https://doi.org/10.1016/S1875-5372(16)30051-0

    Article  CAS  Google Scholar 

  22. C. Dong, X. Zhang, H. Cai, et al., Adv. Powder Technol. 27, 2416 (2016). https://doi.org/10.1016/j.apt.2016.08.018

    Article  CAS  Google Scholar 

  23. C. Dong, F. Cheng, X. Zhang, et al., Iranian J. Sci. Technol., Transactions A: Sci. 42, 1905(2017). https://doi.org/10.1007/s40995-017-0353-3

  24. G. Xu, X. Qiao, X. Qiu, et al., Rare Metal Mater. Eng. 39, 1532 (2010). https://doi.org/10.1016/S1875-5372(10)60124-5

    Article  Google Scholar 

  25. M. Basuny, I.O. Ali, A.A. El-Gawad, et al., J. Sol-Gel Sci. Technol. 75, 530 (2015). https://doi.org/10.1007/s10971-015-3723-3

    Article  CAS  Google Scholar 

  26. M. A. Kolyvanova, M. A. Klimovich, O. V. Dement’eva, et al., Russ. J. Phys. Chem. B 17, 206 (2023). https://doi.org/10.1134/S1990793123010062

    Article  CAS  Google Scholar 

  27. V. I. Egorov, I. V. Zviagin, D. A Kliukin, et al., Russ. J. Phys. Chem. B 11, 87 (2017). https://doi.org/10.1134/S199079311701016X

    Article  CAS  Google Scholar 

  28. D. T. Thuc, T. Q. Huy, L. H. Hoang, et al., Mater. Lett. 181, 173 (2016). https://doi.org/10.1016/j.matlet.2016.06.008

    Article  CAS  Google Scholar 

  29. V. S. Kulikova and A. F. Shestakov, Russ. J. Phys. Chem. B 1, 507 (2007). https://doi.org/10.1134/S1990793107050119

    Article  Google Scholar 

  30. R. Eluri and B. Paul, Mater. Lett. 76, 36 (2012). https://doi.org/10.1016/j.matlet.2012.02.049

    Article  CAS  Google Scholar 

  31. R. Chauhan, A. Kumar, and R. P. Chaudhary, J. Sol-Gel Sci. Technol. 63, 546 (2012). https://doi.org/10.1007/s10971-012-2818-3

    Article  CAS  Google Scholar 

  32. S. Ashokkumar, S. Ravi, and S. Velmurugan, Spectrochim. Acta A Mol. Biomol. Spectrosc. 115, 388 (2013). https://doi.org/10.1016/j.saa.2013.06.050

    Article  CAS  PubMed  Google Scholar 

  33. J. L. López-Miranda, M. Vázquez, N. Fletes, et al., Mater. Lett. 176, 285 (2016). https://doi.org/10.1016/j.matlet.2016.04.126

    Article  CAS  Google Scholar 

  34. C. Dong, X. Zhang, and H. Cai, J. Alloys Compd. 583, 267 (2014). https://doi.org/10.1016/j.jallcom.2013.08.207

    Article  CAS  Google Scholar 

  35. N. Muniyappan and N. S. Nagarajan, J. Environ. Chem. Eng. 2, 2037 (2014). https://doi.org/10.1016/j.jece.2014.03.004

    Article  CAS  Google Scholar 

  36. A. P. de Aragão, T. M. de Oliveira, P. V. Quelemes, et al., Arabian J. Chem. 12 (8), 4182 (2016). https://doi.org/10.1016/j.arabjc.2016.04.014

    Article  CAS  Google Scholar 

  37. T. N. Edison, Y. R. Lee, and M. G. Sethuraman, Spectrochim. Acta A Mol. Biomol. Spectrosc. 161, 122(2016). https://doi.org/10.1016/j.saa.2016.02.044

    Article  CAS  PubMed  Google Scholar 

  38. S. Mohammadi, S. Pourseyedi, and A. Amini, J. Environmental Chem. Eng. 4, 2023 (2016). https://doi.org/10.1016/j.jece.2016.03.026

    Article  CAS  Google Scholar 

  39. N. H. Rao, L. N, S. V. Pammi, P. Kollu, et al., Mater. Sci. Eng. C Mater. Biol. Appl. 62, 553 (2016). https://doi.org/10.1016/j.msec.2016.01.072

    Article  CAS  PubMed  Google Scholar 

  40. K. F. Chernysheva and A. A. Revina, Russ. J. Phys. Chem. B 13, 452 (2019). https://doi.org/10.1134/S1990793119030023

    Article  CAS  Google Scholar 

  41. J. K. Patra, G. Das, and K. H. Baek, J. Photochem. Photobiol. B 161, 200 (2016). https://doi.org/10.1016/j.jphotobiol.2016.05.021

    Article  CAS  PubMed  Google Scholar 

  42. E. R. Carmona, N. Benito, T. Plaza, et al., Green Chem. Lett. Rev. 10, 250 (2017). https://doi.org/10.1080/17518253.2017.1360400

    Article  CAS  Google Scholar 

  43. M. Rakibuddin and H. Kim, Mater. Res. Express 5, 085001 (2018). https://doi.org/10.1088/2053-1591/aad0db

    Article  CAS  Google Scholar 

  44. A. K. Biswal and P. K. Misra, Mater. Chem. Phys. 250, 123014 (2020). https://doi.org/10.1016/j.matchemphys.2020.123014

    Article  CAS  Google Scholar 

  45. D. Philip, C. Unni, S.A. Aromal, et al., Spectrochim. Acta A Mol. Biomol. Spectrosc. 78, 899 (2011). https://doi.org/10.1016/j.saa.2010.12.060

    Article  CAS  PubMed  Google Scholar 

  46. D. Philip, Spectrochim. Acta A Mol. Biomol. Spectrosc. 78, 327 (2011). https://doi.org/10.1016/j.saa.2010.10.015

    Article  CAS  PubMed  Google Scholar 

  47. J. Das and P. Velusamy, J. Taiwan Inst. Chem. Eng. 45, 2280 (2014). https://doi.org/10.1016/j.jtice.2014.04.005

    Article  CAS  Google Scholar 

  48. A. A. Kirsankin, M. V. Grishin, S. Y Sarvadii, et al., Russ. J. Phys. Chem. B 11, 521–525 (2017). https://doi.org/10.1134/S1990793117030186

    Article  CAS  Google Scholar 

  49. D. V. Konev, A. P. Tikhonov, S. Z. Rogovina, et al., Russ. J. Phys. Chem. B 7, 490 (2013). https://doi.org/10.1134/S1990793113040167

    Article  CAS  Google Scholar 

  50. C. Dong, K. Zhou, X. Zhang, et al., Mater. Lett. 120, 118 (2014). https://doi.org/10.1016/j.matlet.2014.01.039

    Article  CAS  Google Scholar 

  51. C. Dong, X. Zhang, H. Cai, et al., Optik 127, 10378 (2016). https://doi.org/10.1016/j.ijleo.2016.08.055

    Article  CAS  Google Scholar 

  52. C. Dong, C. Cao, X. Zhang, et al., Optik 130, 162 (2017). https://doi.org/10.1016/j.ijleo.2016.11.010

    Article  CAS  Google Scholar 

  53. J. Zha, C. Dong, X. Wang, et al., Optik 144, 511 (2017). https://doi.org/10.1016/j.ijleo.2017.06.088

    Article  CAS  Google Scholar 

  54. J. Y. Kim, H. I. Chung, K. O. Jung, et al., Food Sci. Biotechnol. 22, 1 (2013). https://doi.org/10.1007/s10068-013-0235-1

    Article  CAS  Google Scholar 

  55. J. Naowaboot, P. Pannangpetch, V. Kukongviriyapan, et al., Plant Foods Hum. Nutr. 64, 116 (2009). https://doi.org/10.1007/s11130-009-0112-5

    Article  CAS  PubMed  Google Scholar 

  56. J. Kang, R. Wang, S. Tang, et al., Agroforest Syst. 94, 1521 (2020). https://doi.org/10.1007/s10457-019-00410-7

    Article  Google Scholar 

  57. P. J. Babu, P. Sharma, M. C. Kalita, et al., Front. Mater. Sci. 5, 379 (2011). https://doi.org/10.1007/s11706-011-0153-1

    Article  Google Scholar 

  58. M. Asariha, A. Chahardoli, N. Karimi, et al., Bull. Mater. Sci. 43, 57 (2020). https://doi.org/10.1007/s12034-019-2005-z

    Article  CAS  Google Scholar 

  59. D. S. Chumakov, A. O. Sokolov, V. A. Bogatyrev, et al., Nanotechnol. Russia 13, 539–545 (2018). https://doi.org/10.1134/S1995078018050038

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Hubei Provincial Natural Science Foundation of China (2022CFD053), the Science and Technology Research Project of Hubei Provincial Department of Education (nos. D20194502 and B2019226), Hubei Polytechnic University scientific research project (19XJK02Z and 19XJK02Y), Science and Technology Foundation of Jiangxi Educational Committee (no. GJJ180701), and State Key Laboratory of Materials Processing and Die & Mould Technology in Huazhong University of Science and Technology (no. P2018-015). We also gratefully acknowledge the financial support of the Open Foundation of Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation (2019102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Dong.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, C., Fu, R., Yu, S. et al. Biosynthesis and Characterization of Monodisperse Gold Nanoparticles using Mulberry Leaf Extract at Room Temperature. Russ. J. Phys. Chem. B 18, 599–606 (2024). https://doi.org/10.1134/S1990793124020064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793124020064

Keywords:

Navigation