Log in

Application of a mathematical model of variation potential for analysis of its influence on photosynthesis in higher plants

  • Articles
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Local injuries induce generation of variation potential (VP) in higher plants; VP propagates into intact parts of a plant and induces the photosynthesis inactivation, which is probably connected with a proton influx into the cells. The aim of this work was to theoretically investigate participation of the intra- and extracellular pH changes in this process using the VP mathematical model developed earlier. The VP model took into account main systems of ion transport in a cell and their regulation; concentrations of the potential-forming ions; buffering properties, and the involvement of a “wound substance” in a signal propagation. To describe the dependence of the photosynthetic parameters on the pH changes, experimentally obtained linear relations were used. The model was shown to give a good qualitative description of the photosynthetic response at a distance of 10 cm from the injury area and simulated a considerable attenuation of the response at a distance of 22 cm. Analysis of the dependence of the photosynthetic response parameters on the VP amplitude also showed a qualitative correspondence of the model with the experimental results. Thus, experimental photosynthetic response is described well by the VP model that presumes linear dependencies of the photosynthetic parameter changes on pH shifts. This theoretical result supports a hypothesis about a key role of pH shifts in the development of the photosynthetic response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Opritov V.A., Piatigin S.S., Retivin V.G. 1991. Bioelectrogenez vysshikh rasteniy (Bioelectrogenesis in higher plants). Moscow: Nauka.

    Google Scholar 

  2. Davies E. 2006. Electrical signals in plants: Facts and hypotheses. In: Plant electrophysiology. Theory and methods. Ed. Volkov A.G. Berlin, Heidelberg, New York: Springer–Verlag, p. 407–422.

    Chapter  Google Scholar 

  3. Fromm J., Lautner S. 2007. Electrical signals and their physiological significance in plants. Plant Cell Environ. 30, 249–257.

    Article  CAS  PubMed  Google Scholar 

  4. Felle H.H., Zimmermann M.R. 2007. Systemic signaling in barley through action potentials. Planta. 226, 203–214.

    Article  CAS  PubMed  Google Scholar 

  5. Mancuso S. 1999. Hydraulic and electrical transmission of wound-induced signals in Vitis vinifera. Aust. J. Plant Physiol. 26, 55–61.

    Article  Google Scholar 

  6. Stahlberg R., Robert E., Cleland R.E., van Volkenburgh E. 2006. Slow wave potentials–a propagating electrical signal unique to higher plants. In: Communication in plants. Neuronal aspects of plant life. Eds. Baluška F., Mancuso S., Volkmann D. Berlin, Heidelberg: Springer–Verlag, p. 291–309.

    Google Scholar 

  7. Malone M. 1994. Wound-induced hydraulic signals and stimulus transmission in Mimosa pudica L. New Phytol. 128, 49–56.

    Article  Google Scholar 

  8. Vodeneev V., Orlova A., Morozova E., Orlova L., Akinchits E., Orlova O., Sukhov V. 2012. The mecha-− HCO3 nism of propagation of variation potentials in wheat leaves. J. Plant. Physiol. 169, 949–954.

    Article  CAS  PubMed  Google Scholar 

  9. Julien J.L., Desbiez M.O., de Jaeger G., Frachisse J.M. 1991. Characteristics of the wave of depolarization induced by wounding in Bidens pilosa L. J. Exp. Bot. 42, 131–137.

    Article  Google Scholar 

  10. Zimmermann M.R., Felle H.H. 2009. Dissection of heat-induced systemic signals: Superiority of ion fluxes to voltage changes in substomatal cavities. Planta. 229, 539–547.

    Article  CAS  PubMed  Google Scholar 

  11. Vodeneev V.A., Akinchits E.K., Orlova L.A., Sukhov V.S. 2011. The role of Ca2+, H+, Cl ions in generation of variation potential in pumpkin plant Cucurbita pepo L. Fiziologiya rasteniy (Rus.). 58 (6), 826–833.

    Google Scholar 

  12. Katicheva L., Sukhov V., Akinchits E., Vodeneev V. 2014. Ionic nature of burn-induced variation potential in wheat leaves. Plant Cell Physiol. 55, 1511–1519.

    Article  CAS  PubMed  Google Scholar 

  13. Peña-Cortés H., Fisahn J., Willmitzer L. 1995. Signals involved in wound-induced proteinase inhibitor II gene expression in tomato and potato plants. Proc. Natl. Acad. Sci. USA. 92, 4106–4113.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bulychev A.A., Kamzolkina N.A., Luengviriya J., Rubin A.B., Müller S.C. 2004. Effect of a single excitation stimulus on photosynthetic activity and lightdependent pH banding in Chara cells. J. Membr. Biol. 202, 11–19.

    Article  CAS  PubMed  Google Scholar 

  15. Hlaváčková V., Krchňák P., Nauš J., Novák O., Špundová M., Strnad M. 2006. Electrical and chemical signals involved in short-term systemic photosynthetic responses of tobacco plants to local burning. Planta. 225, 235–244.

    Article  PubMed  Google Scholar 

  16. Krupenina N.A., Bulychev A.A. 2007. Action potential in a plant cell lowers the light requirement for non-photochemical energy-dependent quenching of chlorophyll fluorescence. Biochim. Biophys. Acta. 1767, 781–788.

    Article  CAS  PubMed  Google Scholar 

  17. Krupenina N.A., Bulychev A.A., Roelfsema M.R.G., Schreiber U. 2008. Action potential in Chara cells intensifies spatial patterns of photosynthetic electron flow and non-photochemical quenching in parallel with inhibition of pH banding. Photochem. Photobiol. Sci. 7, 681–688.

    Article  CAS  PubMed  Google Scholar 

  18. Grams T.E.E., Lautner S., Felle H.H., Matyssek R., Fromm J. 2009. Heat-induced electrical signals affect cytoplasmic and apoplastic pH as well as photosynthesis during propagation through the maize leaf. Plant Cell Environ. 32, 319–326.

    Article  CAS  PubMed  Google Scholar 

  19. Pavlovič A., Slováková L., Pandolfi C., Mancuso S. 2011. On the mechanism underlying photosynthetic limitation upon trigger hair irritation in the carnivorous plant Venus flytrap (Dionaea muscipula Ellis). J. Exp. Bot. 62, 1991–2000.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sukhov V., Orlova L., Mysyagin S., Sinitsina J., Vodeneev V. 2012. Analysis of the photosynthetic response induced by variation potential in geranium. Planta. 235, 703–712.

    Article  CAS  PubMed  Google Scholar 

  21. Gallé A., Lautner S., Flexas J., Ribas-Carbo M., Hanson D., Roesgen J., Fromm J. 2013. Photosynthetic responses of soybean (Glycine max L.) to heat-induced electrical signalling are predominantly governed by modifications of mesophyll conductance for CO2. Plant Cell Environ. 36, 542–552.

    Article  PubMed  Google Scholar 

  22. Sukhov V., Sherstneva O., Surova L., Katicheva L., Vodeneev V. 2014. Proton cellular influx as a probable mechanism of variation potential influence on photosynthesis in pea. Plant Cell Environ. 37, 2532–2541.

    Article  CAS  PubMed  Google Scholar 

  23. Sukhov V., Surova L., Sherstneva O., Vodeneev V. 2014. Influence of variation potential on resistance of the photosynthetic machinery to heating in pea. Physiol. Plant. 152, 773–783.

    Article  CAS  PubMed  Google Scholar 

  24. Sukhov V., Surova L., Sherstneva O., Katicheva L., Vodeneev V. 2015. Variation potential influence on photosynthetic cyclic electron flow in pea. Front. Plant Sci. 5, 766. doi 10.3389/fpls.2014.00766

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sherstneva O.N., Vodeneev V.A., Katicheva L.A., Surova L.M., Sukhov V.S., 2015. Participation of intracellular and extracellular pH changes in photosynthetic response development induced by variation potential in pumpkin seedlings. Biokhimia (Rus.). 8 (6), 920–930.

    Google Scholar 

  26. Sherstneva O.N, Surova L.N, Vodeneev V.A. Plotnikova Yu.I., Bushueva A.V., Sukhov V.S. 2015. The role of the intra-and extracellular protons in the photosynthetic response induced by the variation potential in pea seedlings. Biol. Membrany (Rus.). 32 (5–6), 446–454.

    CAS  Google Scholar 

  27. Sukhov V., Akinchits E., Katicheva L., Vodeneev V. 2013. Simulation of variation potential in higher plant cells. J. Membr. Biol. 246, 287–296.

    Article  CAS  PubMed  Google Scholar 

  28. Sukhov V., Vodeneev V. 2009. A mathematical model of action potential in cells of vascular plants. J. Membr. Biol. 232, 59–67.

    Article  CAS  PubMed  Google Scholar 

  29. Sukhov V., Nerush V., Orlova L., Vodeneev V. 2011. Simulation of action potential propagation in plants. J. Theor. Biol. 291, 47–55.

    Article  PubMed  Google Scholar 

  30. Gradmann D. 2001. Models for oscillations in plants. Aust. J. Plant. Physiol. 28, 577–590.

    CAS  Google Scholar 

  31. Grignon C., Sentenac H. 1991. pH and ionic conditions in the apoplast. Annu. Rev. Plant Phvsiol. Plant Mol. Biol. 42, 3–28.

    Google Scholar 

  32. Sukhov V., Surova L., Sherstneva O., Bushueva A., Vodeneev V. 2015. Variation potential induces decreased PSI damage and increased PSII damage under high external temperatures in pea. Funct. Plant Biol. 42, 727–736.

    Article  Google Scholar 

  33. Maxwell K., Johnson G.N. 2000. Chlorophyll fluorescence–a practical guide. J. Exp. Bot. 51, 659–668.

    Article  CAS  PubMed  Google Scholar 

  34. Muller P., Li X.-P., Niyogi K.K. 2001. Non-photochemical quenching. A response to excess light energy. Plant Physiol. 125, 1558–1566.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Sukhov.

Additional information

Original Russian Text © O.N. Sherstneva, V.A. Vodeneev, L.M. Surova, E.M. Novikova, V.S. Sukhov, 2016, published in Biologicheskie Membrany, 2016, Vol. 33, No. 4, pp. 293–302.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sherstneva, O.N., Vodeneev, V.A., Surova, L.M. et al. Application of a mathematical model of variation potential for analysis of its influence on photosynthesis in higher plants. Biochem. Moscow Suppl. Ser. A 10, 269–277 (2016). https://doi.org/10.1134/S1990747816030089

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747816030089

Keywords

Navigation