Log in

Analysis of the photosynthetic response induced by variation potential in geranium

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Electrical signals (action and variation potentials) caused by environmental stimuli induce a number of physiological responses in plants including changes in photosynthesis; however, mechanisms of these changes remain unclear. We investigated the influence of the variation potential on photosynthesis in geranium (Pelargonium zonale) under different conditions (control, low external CO2 concentration, and actinic light absence). The variation potential caused by lamina burning induced a reduction in photosynthesis (decreases in effective quantum yields of photosystem I and II, CO2 assimilation rate, and stomatal conductance) in unstimulated leaves under control conditions. Changes in the majority of light-stage parameters (photosystem I and II quantum yields, coefficients of photochemical and non-photochemical quenching, quantum yield of non-photochemical energy dissipation in photosystem I due to donor-side limitation) were correlated with a decrease in CO2 assimilation rate. The changes were similar to those caused by lowering [CO2]; their magnitudes decreased both under low external CO2 concentration and without actinic light. These results support the hypothesis that Calvin cycle inactivation plays a key role in photosynthetic response induced by electrical signals. However, a decrease in electron transport through the PSI acceptor side also induced by variation potential was not correlated with a decrease in the CO2 assimilation rate and did not depend on the external CO2 concentration or actinic light intensity. Thus, we suggest that there are two different mechanisms of light-stage inactivation induced by the variation potential in geranium: one strongly dependent on dark-stage inactivation and one weakly dependent on dark-stage inactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AP:

Action potential

PSI:

Photosystem I

PSII:

Photosystem II

VP:

Variation potential

References

  • Allen JF (2003) Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chain. Trends Plant Sci 8:15–19

    Article  PubMed  CAS  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  PubMed  CAS  Google Scholar 

  • Bukhov NG (2004) Dynamic light regulation of photosynthesis. Russ J Plant Physiol 51:742–753

    Article  CAS  Google Scholar 

  • Bulychev AA, Kamzolkina NA, Luengviriya J, Rubin AB, Müller SC (2004) Effect of a single excitation stimulus on photosynthetic activity and light-dependent pH banding in Chara cells. J Membr Biol 202:11–19

    Article  PubMed  CAS  Google Scholar 

  • Buschmann C (1999) Photochemical and non-photochemical quenching coefficients of the chlorophyll fluorescence: comparison of variation and limits. Photosynthetica 37:217–224

    Article  CAS  Google Scholar 

  • Davies E (2006) Electrical signals in plants: facts and hypotheses. In: Volkov AG (ed) Plant electrophysiology: theory and methods. Springer, Berlin, pp 407–422

    Chapter  Google Scholar 

  • Davies E, Stankovic B (2006) Electrical signals, the cytoskeleton, and gene expression: a hypothesis on the coherence of the cellular responses to environmental insult. In: Baluška F, Mancuso S, Volkmann D (eds) Communication in plants. Neuronal aspects of plant life. Springer, Berlin, pp 309–320

    Google Scholar 

  • Dziubinska H, Filek M, Koscielniak J, Trebacz K (2003) Variation and action potentials evoked by thermal stimuli accompany enhancement of ethylene emission in distant non-stimulated leaves of Vicia faba minor seedlings. J Plant Physiol 160:1203–1210

    Article  PubMed  CAS  Google Scholar 

  • Felle HH, Zimmermann MR (2007) Systemic signaling in barley through action potentials. Planta 226:203–214

    Article  PubMed  CAS  Google Scholar 

  • Filek M, Kościelniak J (1997) The effect of wounding the roots by high temperature on the respiration rate of the shoot and propagation of electric signal in horse bean seedlings (Vicia faba L minor). Plant Sci 123:39–46

    Article  CAS  Google Scholar 

  • Fisahn J, Herde O, Willmitzer L, Peña-Cortés H (2004) Analysis of the transient increase in cytosolic Ca2+ during the action potential of higher plants with high temporal resolution: requirement of Ca2+ transients for induction of jasmonic acid biosynthesis and PINII gene expression. Plant Cell Physiol 45:456–459

    Article  PubMed  CAS  Google Scholar 

  • Fromm J (1991) Control of phloem unloading by action potentials in Mimosa. Physiol Plant 83:529–533

    Article  Google Scholar 

  • Fromm J, Bauer T (1994) Action potentials in maize sieve tubes change phloem translocation. J Exp Bot 45:463–469

    Article  Google Scholar 

  • Fromm J, Eschrich W (1993) Electric signals released from roots of willow (Salix viminalis L.) change transpiration and photosynthesis. J Plant Physiol 141:673–680

    Article  CAS  Google Scholar 

  • Fromm J, Fei H (1998) Electrical signaling and gas exchange in maize plants of drying soil. Plant Sci 132:203–213

    Article  CAS  Google Scholar 

  • Fromm J, Lautner S (2007) Electrical signals and their physiological significance in plants. Plant Cell Environ 30:249–257

    Article  PubMed  CAS  Google Scholar 

  • Gerhart LM, Ward JK (2010) Plant responses to low [CO2] of the past. New Phytol 188:674–695

    Article  PubMed  Google Scholar 

  • Grams TEE, Koziolek C, Lautner S, Matyssek R, Fromm J (2007) Distinct roles of electric and hydraulic signals on the reaction of leaf gas exchange upon re-irrigation in Zea mays L. Plant Cell Environ 30:79–84

    Article  PubMed  Google Scholar 

  • Grams TEE, Lautner S, Felle HH, Matyssek R, Fromm J (2009) Heat-induced electrical signals affect cytoplasmic and apoplastic pH as well as photosynthesis during propagation through the maize leaf. Plant Cell Environ 32:319–326

    Article  PubMed  CAS  Google Scholar 

  • Hlaváčková V, Krchňák P, Nauš J, Novák O, Špundová M, Strnad M (2006) Electrical and chemical signals involved in short-term systemic photosynthetic responses of tobacco plants to local burning. Planta 225:235–244

    Article  PubMed  Google Scholar 

  • Joliot P, Joliot A (2006) Cyclic electron flow in C3 plants. Biochim Biophys Acta 1757:362–368

    Article  PubMed  CAS  Google Scholar 

  • Julien JL, Desbiez MO, de Jaeger G, Frachisse JM (1991) Characteristics of the wave of depolarization induced by wounding in Bidens pilosa L. J Exp Bot 42:131–137

    Article  Google Scholar 

  • Kaiser H, Grams TEE (2006) Rapid hydropassive opening and subsequent active stomatal closure follow heat-induced electrical signals in Mimosa pudica. J Exp Bot 57:2087–2092

    Article  PubMed  CAS  Google Scholar 

  • Klughammer C, Schreiber U (2008) Saturation pulse method for assessment of energy conversion in PS I. PAM Appl Notes 1:11–14

    Google Scholar 

  • Koziolek C, Grams TEE, Schreiber U, Matyssek R, Fromm J (2003) Transient knockout of photosynthesis mediated by electrical signals. New Phytol 161:715–722

    Article  Google Scholar 

  • Krupenina NA, Bulychev AA (2007) Action potential in a plant cell lowers the light requirement for non-photochemical energy-dependent quenching of chlorophyll fluorescence. Biochim Biophys Acta 1767:781–788

    Article  PubMed  CAS  Google Scholar 

  • Krupenina NA, Bulychev AA, Roelfsema MRG, Schreiber U (2008) Action potential in Chara cells intensifies spatial patterns of photosynthetic electron flow and non-photochemical quenching in parallel with inhibition of pH banding. Photochem Photobiol Sci 7:681–688

    Article  PubMed  CAS  Google Scholar 

  • Lautner S, Grams TEE, Matyssek R, Fromm J (2005) Characteristics of electrical signals in poplar and responses in photosynthesis. Plant Physiol 138:2200–2209

    Article  PubMed  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  PubMed  CAS  Google Scholar 

  • Medrano H, Escalona JM, Bota J, Gulías J, Flexas J (2002) Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. Ann Bot 89:895–905

    Article  PubMed  CAS  Google Scholar 

  • Müller P, Li X-P, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    Article  PubMed  Google Scholar 

  • Noctor G, Foyer CH (2000) Homeostasis in adenylate status during photosynthesis in a fluctuating environment. J Exp Bot 51:347–356

    Article  PubMed  CAS  Google Scholar 

  • Opritov VA, Pyatygin SS, Retivin VG (1991) Bioelectrogenesis in higher plants. Nauka, Moscow (in Russian)

  • Oxborough K, Baker NR (1997) Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components—calculation of qP and Fv’/Fm’ without measuring Fo’. Photosynth Res 54:135–142

    Article  CAS  Google Scholar 

  • Pavlovič A, Slováková L, Pandolfi C, Mancuso S (2011) On the mechanism underlying photosynthetic limitation upon trigger hair irritation in the carnivorous plant Venus flytrap (Dionaea muscipula Ellis). J Exp Bot 62:1991–2000

    Article  PubMed  Google Scholar 

  • Peña-Cortés H, Fisahn J, Willmitzer L (1995) Signals involved in wound-induced proteinase inhibitor II gene expression in tomato and potato plants. Proc Natl Acad Sci USA 92:4106–4113

    Article  PubMed  Google Scholar 

  • Pyatygin SS, Opritov VA, Vodeneev VA (2008) Signaling role of action potential in higher plants. Russ J Plant Physiol 55:285–291

    Article  CAS  Google Scholar 

  • Rumeau D, Peltier G, Cournac L (2007) Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. Plant Cell Environ 30:1041–1051

    Article  PubMed  CAS  Google Scholar 

  • Savitch LV, Barker-Åstrom J, Ivanov AG, Hurry V, Öquist G, Huner NPA, Gardeström P (2001) Cold acclimation of Arabidopsis thaliana results in incomplete recovery of photosynthetic capacity, associated with an increased reduction of the chloroplast stroma. Planta 214:295–303

    Article  PubMed  CAS  Google Scholar 

  • Schönknecht G, Neimanis S, Katona E, Gerst U, Heber U (1995) Relationship between photosynthetic electron transport and pH gradient across the thylakoid membrane in intact leaves. Proc Natl Acad Sci USA 92:12185–12189

    Article  PubMed  Google Scholar 

  • Sibaoka T (1991) Rapid plant movements triggered by action potentials. Bot Mag Tokyo 104:73–95

    Article  Google Scholar 

  • Stahlberg R, Cleland RE, van Volkenburgh E (2006) Slow wave potentials—a propagating electrical signal unique to higher plants. In: Baluška F, Mancuso S, Volkmann D (eds) Communication in plants. Neuronal aspects of plant life. Springer, Berlin, pp 291–308

    Google Scholar 

  • Stanković B, Davies E (1996) Both action potentials and variation potentials induce proteinase inhibitor gene expression in tomato. FEBS Lett 390:275–279

    Article  PubMed  Google Scholar 

  • Sukhov VS, Pyatygin SS, Opritov VA, Krauz VO (2008a) Influence of propagating electrical signals on delayed luminescence in pelargonium leaves: experimental analysis. Biophysics 53:226–228

    Article  Google Scholar 

  • Sukhov VS, Pyatygin SS, Opritov VA, Krauz VO (2008b) Influence of propagating electrical signals on delayed luminescence in pelargonium leaves: theoretical analysis. Biophysics 53:308–312

    Article  Google Scholar 

  • Trebacz K, Dziubinska H, Krol E (2006) Electrical signals in long-distance communication in plants. In: Baluška F, Mancuso S, Volkmann D (eds) Communication in plants. Neuronal aspects of plant life. Springer, Berlin, pp 277–290

    Google Scholar 

  • von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387

    Article  Google Scholar 

  • Zimmermann MR, Felle HH (2009) Dissection of heat-induced systemic signals: superiority of ion fluxes to voltage changes in substomatal cavities. Planta 229:539–547

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Sukhov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sukhov, V., Orlova, L., Mysyagin, S. et al. Analysis of the photosynthetic response induced by variation potential in geranium. Planta 235, 703–712 (2012). https://doi.org/10.1007/s00425-011-1529-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1529-2

Keywords

Navigation