Log in

A Novel Rare Earth Enhanced Epoxy Composites: Mechanical Properties, Thermal Stability and Curing Kinetics

  • COMPOSITES
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

The curing kinetics of the epoxy resin/nano rare earth oxides system were studied by non-isothermal differential scanning calorimetry. Curing reaction occurred with DSC thermal analyzers at heating rates of 5, 10, 15, and 20 K/min, respectively. Data on enthalpy changes during heating were collected. The kinetic parameters and curing temperature of the curing reaction of the epoxy resin/ nano rare earth oxides system were calculated by Kissinger–Ozawa, Crane method and T-β extrapolation method. The results showed that the rare earth compounds reduced the activation energy of the epoxy resin curing reaction, but did not change the curing mechanism of the epoxy resin. Studies on the influence of sample fracture morphology showed that the introduction of nano rare earth compounds plays an important role in improving the tensile properties of nanocomposites. When the 1% weight component of nano Gd2O3 was added to the composite, the tensile strength of the composite increased by 65.18%, the flexural strength and modulus increased by 57.92 and 70.04%, respectively, and the glass transition temperature increased by 17.55°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. X. Liang, X. Li, Y. Tang, X. Zhang, W. Wei, and X. Liu, J. Colloid Interface Sci. 611, 105 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. X. Mi, N. Liang, H. Xu, J. Wu, Y. Jiang, B. Nie, and D. Zhang, Prog. Mater. Sci. 130, 100977 (2022).

  3. H. J. Kim, H. G. Kim, B. Seo, and C. S. Lim, J. Polym. Sci. 140, 53249 (2023).

    Google Scholar 

  4. Z. Pan, Z. Zhang, Y. Mo, Y. Cheng, and L. Zhu, Polym. Bull. 80, 4023 (2023).

    Article  CAS  Google Scholar 

  5. M. N. Kopitsyna, I. V. Bessonov, S. A. Gusev, A. V. Kireinov, D. S. Kopitsyn, V. I. Solodilov, and S. V. Kotomil, Polym. Sci., Ser. B 60, 299 (2018).

    Article  CAS  Google Scholar 

  6. M. Ren, L. Wang, L. Luo, and T. Li, Mol. Simul. 45, 509 (2023).

    Article  Google Scholar 

  7. A. V. Krestinin and A. P. Kharitonov, Polym. Sci., Ser. B 60, 516 (2018).

    Article  CAS  Google Scholar 

  8. L. L. Gur’eva, L. I. Kuzub, A. E. Tarasov, A. A. Grishchuk, V. I. Torbov, N. N. Dremova, and E. R. Badamshina, Polym. Sci., Ser. B 64, 209 (2022).

    Article  Google Scholar 

  9. M. Jiang and X. Cheng, J. Compos. Mater. 55, 2197 (2021).

    Article  CAS  Google Scholar 

  10. Y. Chen, S. Zhou, H. Zou, and M. Liang, Polym. Sci., Ser. B 5, 56 (2014).

    Google Scholar 

  11. P. Gao, X. Geng, G. Man, and X. Wang, IEEE Trans. Appl. Supercond. 32, 1 (2021).

    CAS  Google Scholar 

  12. J. Wang, S. Qiu, L. Cheng, W. Chen, Y. Zhou, B. Zou, and L. Song, Appl. Surf. Sci. 571, 151356 (2022).

  13. M. R. Jiang, H. Zhou, and X. H. Cheng, J. Mater. Sci. 54, 10235 (2019).

    Article  CAS  Google Scholar 

  14. Y. Wang, J. Piao, J. Ren, T. Feng, Y. Wang, W. Liu, and X. Chen, Polym. Advan. Technol. 34, 1154 (2023).

    Article  CAS  Google Scholar 

  15. H. Dong, H. Liu, A. Nishimura, Z. Wu, H. Zhang, Y. Han, and L. Li, Sensors 21, 172 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  16. A. Marotta, N. Faggio, and C. Brondi, Polymer 14, 5322 (2022).

    Article  CAS  Google Scholar 

  17. M. Arasa, R. A. Pethrick, A. Mantecón, and A. Serra, Eur. Polym. J. 46, 5 (2010).

    Article  CAS  Google Scholar 

  18. Y. Zhang, M. Zhai, F. Ma,Y. Li, B. Lyu, T. Liu, and M. R. Kessler, Macromol. Mater. Eng. 307, 2100833 (2022).

  19. R. R. Amirov, K. A. Akhmadiev, A. M. Gaifutdinov, K. A. Andrianova, A. Shmelev, A. K. Gatiatulin, and L. M. Amirova, Mater. Today Chem. 29, 101464 (2023).

  20. P. Zhang, M. Zhu, W. Li, G. Xu, X. Huang, X. Yi, and Y. Wu, J. Rare Earth 36, 544 (2018).

  21. A. A. K. Shahrestanaki, M. Mehrshad, and S. H. Akhlaghi, High Perform. Polym. 33, 1025 (2021).

    Article  CAS  Google Scholar 

  22. K. Nabetani, Y. Muramatsu, K. Oka, K. Nakano, H. Hojo, M. Mizumaki, and M. Azuma, Appl. Phys. Lett. 6, 106 (2015).

    Google Scholar 

  23. K. Liu, G. Bian, Z. Zhang, and L. Su, CrystEngComm 24, 6468 (2022).

    Article  CAS  Google Scholar 

  24. S. Wang, Z. Zheng, K. Zheng, J. Long, J. Wang, Y. Ren, and Y. Li, Mater. Res. Express 7, 016571 (2020).

  25. L. Zhang, H. K. Yang, and G. Shi, E-Polymers 10, 136 (2010).

    Google Scholar 

  26. Y. Zhao, X. Jia, L. Li, X. Z. Jiang, and R. Xu, Polym. Sci., Ser. B 64, 229 (2022).

    Article  Google Scholar 

  27. T. Zheng, X. Wang, C. Lu, X. Zhang, Y. Ji, C. Bai, and Y. Qiao, Polymers 11, 680 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. M. Sangermano, I. Roppolo, G. Shan, and M. P. Andrews, Progress. Org. Coat. 65, 431 (2009).

    Article  CAS  Google Scholar 

  29. L. Karthikeyan, D. Desakumaran, P. B. S. Mol, and D. Mathew, J. Therm. Anal. Calorim. 147, 6793 (2022).

    Article  CAS  Google Scholar 

  30. S. Krishnaswamy, V. Marchante, H. Abhyankar, Z. Huang, and J. Brighton, Polym. Plast. Tech. Mat. 58, 1757 (2019).

    CAS  Google Scholar 

  31. S. Yu, X. Li, M. Zou, Z. Li, S. Wang, and D. Wang, Polymers 12, 1732 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. B. S. S. Guimarães, E. L. Guiguer, O, Bianchi, and L. B. Canto, Thermochim. Acta 717, 179351 (2022).

  33. S. M. R. Paran, G. Naderi, E. Movahedifar, M. Jouyandeh, K. Formela, X. Colom, and M. R. Saeb, Materials 14, 2872 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. X. J. Li, C. P. Chai, C. F. Li, G. Li, Y. J. Luo, X. H. Fan, and Q. Zhou, Acta Polym. Sin. 9, 1190 (2013).

    Google Scholar 

  35. M. Sheikhi, F. Rafiemanzelat, N. Sadeghpour, M. Shams, and A. N. Esfahani, J. Mol. Liq. 343, 117568 (2021).

  36. X. Yu, S. Chen, and Y. Xu, J. Wuhan Univ. Technol. 33, 1256 (2018).

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the National Natural Science Foundation of China (no. 52373102), the Key Research and Development Program of Tian** (no. 22YFXTHZ00010, no. 22YFZCSN00040), Tian** Education Commission Scientific Research Program Project (no. 2020KJ053) and the Graduate Research and Innovation Program of Tian** (no. 2021YJSS349, no. 2022SKYZ182).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongke Zhao.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Junwei Li, Lu, W., Yang, D. et al. A Novel Rare Earth Enhanced Epoxy Composites: Mechanical Properties, Thermal Stability and Curing Kinetics. Polym. Sci. Ser. B (2024). https://doi.org/10.1134/S1560090424600529

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1560090424600529

Navigation