Log in

Formation of Silver-Containing Nanocomposites during Thermolysis of Polyacrylonitrile Salt: EPR Study

  • COMPOSITES
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

New insoluble polymer silver-containing nanocomposites are synthesized by the thermal treatment of a polymer complex based on polyacrylonitrile without the use of an additional reducing agent. The resulting composites are paramagnetic and have a spin concentration of about 1017−1018 spin/g and an average size of silver nanoparticles of 5−8 nm. The electron paramagnetic resonance is used to monitor the synthesis of nanosystems in time. It is found that the nanocomposite is formed via two main stages through the reduction of silver ions and the further development of nanoparticles, while the polymer matrix can undergo some changes and contribute to the overall magnetism of the resulting composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. R. Lehner, X. Wang, S. Marsch, and P. Hunziker, Nanomedicine (N. Y., NY. U. S.) 9, 742 (2013).

    CAS  Google Scholar 

  2. S. S. Khutsishvili, M. V. Lesnichaya, T. I. Vakul’skaya, G. Dolmaa, G. P. Aleksandrova, A. L. Rakevich, and B. G. Sukhov, Spectrosc. Lett. 51, 169 (2018).

    Article  CAS  Google Scholar 

  3. S. Suresh, Nanosci. Nanotechnol. 3, 62 (2013).

    Google Scholar 

  4. Y. Zhu, L. P. Stubbs, F. Ho, R. Liu, C. P. Ship, J. A. Maguire, and N. S. Hosmane, ChemCatChem 2, 365 (2010).

    Article  CAS  Google Scholar 

  5. S. Chaturvedia, P. N. Davea, and N. K. Shah, J. Saudi Chem. Soc. 16, 307 (2012).

    Article  Google Scholar 

  6. U. Landau and K. Anselm, Bactericidal and Oligodynamic Action of Silver and Copper in Hygien, Medicine and Water Treatment (Finishing Publ. Ltd., Stevenage, 2007).

    Google Scholar 

  7. B. A. Rozenberg and R. Tenne, Prog. Polym. Sci. 33, 40 (2008).

    Article  CAS  Google Scholar 

  8. A. Kausar, J. Plast. Film Sheeting 35, 295 (2019).

    Article  CAS  Google Scholar 

  9. K. Yusupov, V. Khovaylo, D. Muratov, L. Kozhitov, D. Arkhipov, V. Pryadun, and A. Vasiliev, J. Electron. Mater. 45, 3440 (2016).

    Article  CAS  Google Scholar 

  10. S. K. Kumar, N. Jouault, B. Benicewicz, and T. Neely, Macromolecules 46, 3199 (2013).

    Article  CAS  Google Scholar 

  11. O. M. Folarin, E. R. Sadiku, and A. Maity, Int. J. Phys. Sci. 6, 4869 (2011).

    Google Scholar 

  12. G. Liao, J. Fang, Q. Li, S. Li, Z. Xu, and B. Fang, Nanoscale 11, 7062 (2019).

    Article  CAS  Google Scholar 

  13. A. K. Selvam and G. Nallathambi, Fibers Polym. 16, 1327 (2015).

    Article  CAS  Google Scholar 

  14. S. P. Gubin, Y. A. Koksharov, G. B. Khomutov, and G. Y. Yurkov, Russ. Chem. Rev. 74, 489 (2005).

    Article  CAS  Google Scholar 

  15. Y. Liu, G. Jiang, L. Li, H. Chen, Q. Huang, T. Jiang, and X. Du, MRS Commun. 6, 31 (2015).

    Article  CAS  Google Scholar 

  16. I. Karbownik, T. Rybicki, A. A. Karpinska, and H. Teterycz, Mater. Sci. Polym. 34, 564 (2016).

    Article  CAS  Google Scholar 

  17. P.-O. Rujitanaroj, N. Pimpha, and P. Supaphol, J. Appl. Polym. Sci. 116, 1967 (2010).

    CAS  Google Scholar 

  18. Organikum, Ed. by H. G. O. Becker, W. Berger, G. Domschke, E. Fanghänel, J. Faust, M. Fischer, F. Gentz, K. Gewald, R. Gluch, R. Mayer, K. Müller, D. Pavel, H. Schmidt, K. Scholberg, K. Schwetlick, E. Seiler, and G. Zeppenfield (VEB Deutscher Verlag der Wissenschaften, Berlin, 1986).

    Google Scholar 

  19. C. P. Poole, Electron Spin Resonance: A Comprehensive Treatise on Experimental Techniques (Dover Publ., Dover, 1997).

    Google Scholar 

  20. C. A. Barret and T. B. Massalsky, Structure of Metals (McGraw-Hill, New York, 1966).

    Google Scholar 

  21. S. S. Khutsishvili, T. I. Vakul’skaya, N. P. Kuznetsova, T. G. Ermakova, A. S. Pozdnyakov, and G. F. Prozorova, J. Phys. Chem. C 118, 19338 (2014).

    Article  CAS  Google Scholar 

  22. M. Ali, A. I. Shames, S. Gangopadhyay, B. Saha, and D. Meyerstein, Transition Met. Chem. 29, 463 (2004).

    CAS  Google Scholar 

  23. J. A. McMilan and B. Smaler, J. Chem. Phys. 35, 1698 (1961).

    Article  Google Scholar 

  24. N. I. Tikhonov, S. S. Khutsishvili, L. I. Larina, A. S. Pozdnyakov, A. I. Emel’yanov, G. F. Prozorova, A. V. Vashchenko, and T. I. Vakul’skaya, J. Mol. Struct. 1180, 272 (2019).

    Article  CAS  Google Scholar 

  25. H. N. Po, Coord. Chem. Rev. 20, 171 (1976).

    Article  CAS  Google Scholar 

  26. O. P. Murtha and R. A. Walton, Inorg. Chem. 12, 1278 (1973).

    Article  CAS  Google Scholar 

  27. W. Liu, M. Wang, Z. **ng, and G. Wu, Radiat. Phys. Chem. 81, 835 (2012).

    Article  CAS  Google Scholar 

  28. H. Xue, P. Bhowmik, and S. Schlick, Macromolecules 26, 3340 (1993).

    Article  CAS  Google Scholar 

  29. H. R. Moon, J. H. Kim, and M. P. Suh, Angew. Chem., Int. Ed. Engl. 44, 1261 (2005).

    Article  CAS  Google Scholar 

  30. S. S. Khutsishvili, T. I. Vakul’skaya, G. P. Aleksandrova, and B. G. Sukhov, J. Cluster Sci. 28, 3067 (2017).

    Article  CAS  Google Scholar 

  31. V. A. Timoshenko, T. I. Shabatina, Yu. N. Morozov, and G. B. Sergeev, J. Struct. Chem. 47, 145 (2006).

    Article  CAS  Google Scholar 

  32. J. Michalik, H. Yamada, D. R. Brown, and L. Kevan, J. Phys. Chem. 100, 4213 (1996).

    Article  CAS  Google Scholar 

  33. M. Eichelbaum, K. Rademann, A. Hoell, D. M. Tatchev, W. Weigel, R. Stoser, G. Pacchioni, Nanotecnology 19, 135701 (2008).

    Article  Google Scholar 

  34. V. Ya. Varshavskii, Fibre Chem. 25, 442 (1993).

    Article  Google Scholar 

  35. F. Blatter and K. W. Blazey, ZPhys-e. D: At., Mol. Clusters 18, 427 (1991).

    Article  CAS  Google Scholar 

  36. T. V. Ganenko, A. P. Tantsyrev, A. N. Sapozhnikov, S. S. Khutsishvili, T. I. Vakul’skaya, T. V. Fadeeva, B. G. Sukhov, and B. A. Trofimov, Russ. J. Gen. Chem. 85, 477 (2015).

    Article  CAS  Google Scholar 

  37. Z. Qu and E. Roduner, Asia-Pac. J. Chem. Eng. 4, 602 (2009).

    Article  CAS  Google Scholar 

  38. M. V. Lesnichaya, B. G. Sukhov, G. P. Aleksandrova, E. R. Gasilova, T. I. Vakul’skaya, S. S. Khutsishvili, A. N. Sapozhnikov, I. V. Klimenkov, and B. A. Trofimov, Carbohydr. Polym. 175, 18 (2017).

    Article  CAS  Google Scholar 

  39. A. Kawabata, J. Phys. Soc. Jpn. 29, 902 (1970).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was carried out using equipment of the Baikal Analytical Shared Research Center at the Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Khutsishvili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhonov, N.I., Khutsishvili, S.S., Vakul’skaya, T.I. et al. Formation of Silver-Containing Nanocomposites during Thermolysis of Polyacrylonitrile Salt: EPR Study. Polym. Sci. Ser. B 63, 175–181 (2021). https://doi.org/10.1134/S1560090421010073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090421010073

Navigation