Log in

Stabilized Silver Nanoparticles and Nanoclusters Agn in Humic-Based Bioactive Nanocomposites

  • Brief Communication
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Silver-containing nanocomposites synthesized from the compounds of a humic series have been studied using modern physical–chemical methods (EPR, TEM, IR and XRD, etc.). It is shown that the humic substances with different functional groups and isolated from different sources have also different ability of stabilizing the silver nanoparticles. Long-term stable nanoparticles and silver clusters have been found. A multiplet, observed in the EPR spectra of silver-containing nanocomposites, which are obtained from humic substances isolated from therapeutic muds and shales, is assigned to the formed Agn nanoclusters. Formation of the silver molecular clusters depends on the kind of humic substances and depth of their decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. C. N. R. Rao, A. Müller, and A. K. Cheetham The Chemistry of Nanomaterials (Wiley-VCH, Weinheim, 2004).

    Book  Google Scholar 

  2. J. W. Hill Collodial Silver Medical Uses, Toxicology & Manufacture (Clear Springs Press, Washington, 2009).

    Google Scholar 

  3. U. Landau and K. Anselm Bactericidal and Oligodynamic Action of Silver and Copper in Hygien, Medicine and Water Treatment (Finishing Publications Ltd, Stevenage, 2007).

    Google Scholar 

  4. N. Q. Arancon, C. A. Edwards, S. Lee, and R. Byrne (2006). Eur. J. Soil Biol. 42, S65.

    Article  CAS  Google Scholar 

  5. S. P. Gubin, Yu A Koksharov, G. B. Khomutov, and G Yu. Yurkov (2005). Russ. Chem. Rev. 74, 489.

    Article  CAS  Google Scholar 

  6. R. Klöcking and B. Helbig in A. Steinbüchel and R. H. Marchessault (eds.), Biopolymers for Medical and Pharmaceutical Applications (Wiley-VCH, Weinheim, 2005), p. 3.

    Google Scholar 

  7. I. A. Schepetkin, A. Khlebnikov, and B. S. Kwon (2002). Drug Develop. Res. 57, 140.

    Article  CAS  Google Scholar 

  8. G. Verlinden, B. Pycke, J. Mertens, F. Debersaques, K. Verheyen, G. Baert, J. Bries, and G. Haesaert (2009). J. Plant Nutr. 32, 1407.

    Article  CAS  Google Scholar 

  9. J. Xu, J. Wu, and Y. He Functions of Natural Organic Matter in Changing Environment (Springer, Netherlands, 2013).

    Book  Google Scholar 

  10. C. E. W. Steinberg Ecology of Humic Substances in Freshwaters (Springer-Verlag, Berlin, 2003).

    Book  Google Scholar 

  11. I. V. Perminova, K. Hatfield, and N. Hertkorn Use of Humic Substances to Remediate Polluted Environments: From Theory to Practice (Springer, Netherlands, 2005).

    Book  Google Scholar 

  12. M. V. Lesnichaya, G. P. Aleksandrova, G. Dolmaa, A. N. Sapozhnikov, B. G. Sukhov, D. Regdel, and B. A. Trofimov (2014). Dokl. Chem. 456, 72.

    Article  CAS  Google Scholar 

  13. J. Lehmann and M. Kleber (2015). Nature 528, 60.

    Article  CAS  Google Scholar 

  14. M. W. I. Schmidt, M. S. Torn, S. Abiven, T. Dittmar, G. Guggenberger, I. A. Janssens, M. Kleber, I. Kögel-Knabner, J. Lehmann, D. A. C. Manning, P. Nannipieri, D. P. Rasse, S. Weiner, and S. E. Trumbore (2011). Nature 478, 49.

    Article  CAS  Google Scholar 

  15. D. Gondar, R. Lopez, S. Fiol, J. M. Antelo, and F. Arce (2005). Geoderma 126, 367.

    Article  CAS  Google Scholar 

  16. C. Zaccone, T. M. Miano, and W. Shotyk (2007). Org. Geochem. 38, 151.

    Article  CAS  Google Scholar 

  17. A. K. Shukla EMR/ESR/EPR Spectroscopy for Characterization of Nanomaterials (Springer India, New Delhi, 2017).

    Book  Google Scholar 

  18. A. Piccolo (2002). Adv. Agronomy 75, 57.

    Article  CAS  Google Scholar 

  19. G. P. Aleksandrova, G. Dolmaa, Sh Tserenpil, L. A. Grishenko, B. G. Sukhov, D. Regdel, and B. A. Trofimov in J. Xu, J. Wu, and Y. He (eds.), Functions of Natural Organic Matter in Changing Environment (Springer, Netherlands, 2013), p. 783.

    Chapter  Google Scholar 

  20. N. I. Tikhonov, S. S. Khutsishvili, M. V. Lesnichaya, G. Dolmaa, T. I. Vakul’skaya, G. P. Aleksandrova, and B. G. Sukhov (2016). Magn. Reson. Solids 18, 16104.

    Google Scholar 

  21. C. P. Poole Electron Spin Resonance: A Comprehensive Treatise on Experimental Techniques, 2nd ed (Dover Publications, Dover, 1997).

    Google Scholar 

  22. C. A. Barret and T. B. Massalsky Structure of Metalls (McGraw-Hill, New-York, 1966).

    Google Scholar 

  23. S. S. Khutsishvili, T. I. Vakul’skaya, N. P. Kuznetsova, T. G. Ermakova, A. S. Pozdnyakov, and G. F. Prozorova (2014). J. Phys. Chem. C 118, 19338.

    Article  CAS  Google Scholar 

  24. M. Eichelbaum, K. Rademann, A. Hoell, D. M. Tatchev, W. Weigel, R. Strößer, and G. Pacchioni (2008). Nanotechnology 19, 1.

    Article  Google Scholar 

  25. B. Piawa and A. B. Więckowski (2007). Res. Chem. Intermediat. 33, 825.

    Article  Google Scholar 

  26. G. Davies, E. A. Ghabbour, and K. A. Khairy Humic Substances: Nature’s Most Versatile Materials (CRC Press, New York, 2003).

    Google Scholar 

  27. M. González-Pérez, L. Martin-Neto, L. A. Colnago, D. M. B. P. Milori, O. A. de Camargo, R. Berton, and W. Bettiol (2006). Soil Till. Res. 91, 95.

    Article  Google Scholar 

  28. A. Jezierski, F. Czechowski, M. Jerzykiewicz, Y. Chen, and J. Drozd (2000). Spectrochim. Acta A Mol. Biomol. Spectrosc. 56A, 379.

    Article  CAS  Google Scholar 

  29. K. Bourhis, A. Royon, G. Papon, M. Bellec, Ya. Petit, L. Canioni, M. Dussauze, V. Rodriguez, L. Binet, D. Caurant, M. Treguer, J.-J. Videau, and T. Cardinal (2013). Mat. Res. Bull. 48, 1637.

    Article  CAS  Google Scholar 

  30. J. Sadlo, J. Michalik, and L. Kevan (2006). Nukleonika 51, 49.

    Google Scholar 

  31. C. Sieber, J. Buttet, W. Harbich, and C. Felix (2004). Phys. Rev. A 70, 041201(R).

    Article  Google Scholar 

  32. R. J. T. Houk, B. W. Jacobs, F. el Gabaly, N. N. Chang, A. A. Talin, D. D. Graham, S. D. House, I. M. Robertson, and M. D. Allendorf (2009). Nano Lett. 9, 3413.

    Article  CAS  Google Scholar 

  33. R. Fournier (2001). J. Chem. Phys. 11, 2165.

    Article  Google Scholar 

  34. M. Harb, F. Rabilloud, D. Simon, A. Rydlo, S. Lecoultre, F. Conus, V. Rodrigues, and C. Félix (2008). J. Chem. Phys. 129, 194108.

    Article  CAS  Google Scholar 

  35. A. Baldansuren, Rüdiger-A Eichel, and E. Roduner (2009). Phys. Chem. Chem. Phys. 11, 6664.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the President Grant of Russian Federation (Grant MK-7149.2016.3). The authors are grateful to the Baikal Analytical Center for the special measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spartak S. Khutsishvili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khutsishvili, S.S., Vakul’skaya, T.I., Aleksandrova, G.P. et al. Stabilized Silver Nanoparticles and Nanoclusters Agn in Humic-Based Bioactive Nanocomposites. J Clust Sci 28, 3067–3074 (2017). https://doi.org/10.1007/s10876-017-1281-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1281-2

Keywords

Navigation