Log in

Map** the Potential for Erosion Gullies Using Frequency Ratio and Fuzzy Analytical Hierarchy Process: Case Study Medjerda Basin, Northeast Algeria

  • SOIL EROSION
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Soil erosion poses a significant problem in the Mediterranean region, posing serious threats to the environment and natural resources. The objective of this study is to identify and evaluate the risks associated with gully erosion in the Medjerda watershed in the northeastern part of Algeria. To accomplish this goal, two models were utilized: the fuzzy analytic hierarchy process (F-AHP) and the frequency ratio (FR). Twelve factors that contribute to soil erosion were considered in the study: slope, elevation, distance to streams, land use and land cover, drainage density (DD), topographic wetness index (TWI), rainfall, soil groups, lineament density, soil power index (SPI), sediment transport index (STI), and plan curvature. The results indicate that sediment transport index (STI), rainfall, and slope are the most influential factors in predicting erosion in the Medjerda Basin. To validate the models used, the area under the receiver operating characteristics curve (AUC) was employed. The AUC values obtained for the FR and F-AHP models were 75.5 and 73.7%, respectively, indicating their excellent accuracy in identifying the erosion susceptibility area. The accuracy ratings of both models demonstrate their outstanding predictive capabilities. Thus, the results of soil erosion susceptibility maps with a better success rate and forecast could be beneficial and effective for implementing various policy measures to safeguard soil. They could be useful for managing gully erosion risks in different parts of the river basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. Abdı, A. Bouamrane, T. Karech, N. Dahri, and A. Kaouachi, “Landslide susceptibility map** using GIS-based fuzzy logic and the analytical hierarchical processes approach: a case study in Constantine (North-East Algeria),” Geotech. Geol. Eng. 39, 5675–5691 (2022). https://doi.org/10.1007/s10706-021-01855-3

    Article  Google Scholar 

  2. H. G. Abdo, H. Almohamad, A. A. Al Dughairi, S. K. Ajim Ali, F. Parvin, A. Elbeltagi, R. Costache, S. Mohammed, M. Al-Muutiry, and K. Alsafadi, “Spatial implementation of frequency ratio, statistical index and index of entropy models for landslide susceptibility map** in Al-Balouta river basin, Tartous Governorate, Syria,” Geosci. Lett. 9, 45 (2022). https://doi.org/10.1186/s40562-022-00256-5

    Article  Google Scholar 

  3. P. D Aher, J. Adinarayana, and S. D. Gorantiwar, “Quantification of morphometric characterization and prioritization for management planning in semi-arid tropics of India: a remote sensing and GIS approach,” J. Hydrol. 511, 850–860 (2014). https://doi.org/10.1016/j.jhydrol.2014.02.028

    Article  Google Scholar 

  4. I. Ahmad, M. A. Dar, A. H Teka, T. Gebre, E. Gadissa, and T. A. Tolosa, “Application of hydrological indices for erosion hazard map** using Spatial Analyst tool,” Environ. Monit. Assess. 191, 482 (2019). https://doi.org/10.1007/s10661-019-7614-x

    Article  Google Scholar 

  5. F. Ait El Haj, L. Ouadif, and A. Akhssas, “Identification of soil erosion-susceptible areas using analytical hierarchy process (AHP) and GIS,” J. Southwest Jiaotong Univ. 58 (02), 105–118 (2023). https://doi.org/10.35741/issn.0258-272.58.2.10

    Article  Google Scholar 

  6. K. K. Ajaykumar, H. Jaweed Tasadoq, S. Kale Sanjay, N. Umrikar Bhavana, and N. Sankhua Rabindranath, “Identification of erosion-prone areas using modified morphometric prioritization method and sediment production rate: a remote sensing and GIS approach,” Geomatics, Nat. Hazards Risk 10 (1), 986–1006 (2019). https://doi.org/10.1080/19475705.2018.1555189

    Article  Google Scholar 

  7. A. Akgün and N. Türk, “Map** erosion susceptibility by a multivariate statistical method: a case study from the Ayvalık region, N W Turkey,” Comput. Geosci. 37 (9), 1515–1524 (2011). https://doi.org/10.1016/j.cageo.2010.09.006

    Article  Google Scholar 

  8. A. M. Al-Abadi and A. K. Al-Ali, “Susceptibility map** of gully erosion using GIS-based statistical bivariate models: a case study from Ali Al-Gharbi District, Maysan Governorate, southern Iraq,” Environ. Earth Sci. 77, 249 (2018). https://doi.org/10.1007/s12665-018-7434-2

    Article  Google Scholar 

  9. S. Amare, E. Langendoen, S. Keesstra, V. D. M. Ploeg, H. Gelagay, H. Lemma, and S. van der Zee, “Susceptibility to gully erosion: applying random forest (RF) and frequency ratio (FR) approaches to a small catchment in Ethiopia,” Water 13 (2), 216 (2021). https://doi.org/10.3390/w13020216

    Article  Google Scholar 

  10. S. S Anil and S. Arun Das, “Ascertaining erosion potential of watersheds using morphometric and fuzzy-analytical hierarchy processes: a case study of Agrani river watershed, India,” J. Geol. Soc. India 97, 951–958 (2021). https://doi.org/10.1007/s12594-021-1796-x

    Article  Google Scholar 

  11. A. Arabameri, B. Pradhan, H. R. Pourghasemi, and K. Rezaei, “Identification of erosion-prone areas using different multi-criteria decision-making techniques and GIS,” Geomatics, Nat. Hazards Risk 9, 1129–1155 (2018). https://doi.org/10.1080/19475705.2018.1513084

    Article  Google Scholar 

  12. A. Arabameri, J. P. Tiefenbacher, T. Blaschke, B. Pradhan, and D. Tien Bui, “Morphometric analysis for soil erosion susceptibility map** using novel GIS-based ensemble model,” Remote Sens. 12 (5), 874 (2020). https://doi.org/10.3390/rs12050874

    Article  Google Scholar 

  13. A. Arjomandi, S. A. Mortazavi, S. Khalilian, and A. Z. Garizi, “Optimal land-use allocation using MCDM and SWAT for the Hablehroud Watershed, Iran,” Land Use Policy 100, 104930 (2021). https://doi.org/10.1016/j.landusepol.2020.104930

    Article  Google Scholar 

  14. G. Ashiagbor, K. Forkuo Eric, P. Laari, and R. Aabeyir, “Modeling soil erosion using RUSLE and GIS tools,” Int. J. Remote Sens. Geosci. 2 (4), 7–17 (2013).

    Google Scholar 

  15. A. Azareh, O. Rahmati, E. Rafiei-Sardooi, J. B. Sankey, S. Lee, H. Shahabi, and B. B. Ahmad, “Modelling gully-erosion susceptibility in a semi-arid region, Iran: Investigation of applicability of certainty factor and maximum entropy models,” Sci. Total Environ. 10 (655), 684–696 (2019). https://doi.org/10.1016/j.scitotenv.2018.11.235

    Article  CAS  Google Scholar 

  16. Y. Bahrami, H. Hassani, and A. Maghsoudi, “Landslide susceptibility map** using AHP and fuzzy methods in the Gilan province,” Iran Geojournal 86, 1797–1816 (2020). https://doi.org/10.1007/s10708-020-10162-y

    Article  Google Scholar 

  17. M. Belloula, H. Dridi, and M. Kalla, “Spatialization of water erosion using analytic hierarchy process (AHP) method in the high valley of the Medjerda, eastern Algeria,” J. Water Land Dev. 44 (I–III), 19–25 (2020). https://doi.org/10.24425/jwld.2019.127041

  18. D. Bhandari, R. Joshi, R. R. Regm, and N. Awasthi, “Assessment of soil erosion and its impact on agricultural productivity by using the RMMF model and local perception: a case study of Rangun Watershed of Mid-Hills, Nepal,” Appl. Environ. Soil Sci. 2021, 5747138 (2021). https://doi.org/10.1155/2021/5747138

    Article  Google Scholar 

  19. M. Boroughani, S. Pourhashemi, H. Hashemi, M. Salehi, A. Amirahmadi, M. A Zangane Asadi, and R. Berndtsson, “Application of remote sensing techniques and machine learning algorithms in dust source detection and dust source susceptibility map**,” Ecol. Inf. 56, 101059 (2020). https://doi.org/10.1016/j.ecoinf.2020.101059

    Article  Google Scholar 

  20. A. Bouamrane, A. Bouamane, and H. Abida, “Water erosion hazard distribution under a semi-arid climate condition: case of Mellah watershed, North-eastern Algeria,” Geoderma 403, 115381 (2021). https://doi.org/10.1016/j.geoderma.2021.115381

    Article  Google Scholar 

  21. H. Bouguerra, A. Bouanani, K. Khanchoul, O. Derdous, and S. E. Tachi, “Map** erosion prone areas in the Bouhamdane watershed (Algeria) using the revised universal soil loss equation through GIS,” J. Water Land Dev. 32, 13–23 (2017). https://doi.org/10.1515/jwld-2017-0002

    Article  Google Scholar 

  22. R. Bou Kheir, O. Cerdan, and C. Abdallah, “Regional soil erosion risk map** in Lebanon,” Geomorphology 82 (3–4), 347–359 (2006). https://doi.org/10.1016/j.geomorph.2006.05.012

    Article  Google Scholar 

  23. T. Bouramtane, H. Hilal, A. T. Rezende-Filho, K. Bouramtane, L. Barbiero, S. Abraham, V. Valles, I. Kacimi, H. Sanhaji, L. Torres-Rondon, D. D. De Castro, J. d. C. Vieira Santos, J. Ouardi, O. E. Beqqali, N. Kassou, and M. Morarech, “Map** gully erosion variability and susceptibility using remote sensing, multivariate statistical analysis, and machine learning in South MatoGrosso, Brazil,” Geosciences 12 (6), 235 (2022). https://doi.org/10.3390/geosciences12060235

    Article  Google Scholar 

  24. B. Cárceles Rodríguez, V. H. Zuazo, M. S. Rodríguez, B. G. Ruiz, and I. F. García-Tejero, “Soil erosion and the efficiency of the conservation measures in Mediterranean hillslope farming (SE Spain),” Eurasian Soil Sci. 54, 792–806 (2021). https://doi.org/10.1134/S1064229321050069

    Article  Google Scholar 

  25. J. H. Cartwright, S. A. Shammi, and J. C. Rodgers, “Use of multi-criteria decision analysis (MCDA) for map**erosion potential in Gulf of Mexico watershed,” Water 14 (12), 1923 (2022). https://doi.org/10.3390/w14121923

    Article  Google Scholar 

  26. J. Chacón, C. Irigaray, T. Fernández, and R. El Hamdouni, “Engineering geology maps: landslides and geographical information systems,” Bull. Eng. Geol. Environ. 65 (4), 341–411 (2006). https://doi.org/10.1007/s10064-006-0064-z

    Article  Google Scholar 

  27. D. Y. Chang, “Applications of the extent analysis method on fuzzy AHP,” Eur. J. Oper. Res. 95, 649–655 (1996). https://doi.org/10.1016/0377-2217(95)00300-2

    Article  Google Scholar 

  28. H. Chen, G. Liu, X. Zhang, H. Shi, and H. Li, “Quantifying sediment source contributions in an agricultural catchment with ephemeral and classic gullies using 137Cs technique,” Geoderma 398, 115112 (2021). https://doi.org/10.1016/j.geoderma.2021.115112

    Article  CAS  Google Scholar 

  29. T. Danielson, “Utilizing high resolution digital elevation model (DEM) to develop a stream power index (SPI) for the Gilmore creek watershed in Winona country, Minnesota,” in Papers in Resource Analysis (2015), Vol. 15.

  30. J. I. Daoud, “Multicollinearity and regression analysis,” J. Phys.: Conf. Ser. 949, 012009 (2017). https://doi.org/10.1088/1742-6596/949/1/012009

    Article  Google Scholar 

  31. B. Das, R. Bordoloi, L. T. Thungon, A. Paul, P. K. Pandey, M. Mishra, and O. P. Tripathi, “An integrated approach of GIS, RUSLE and AHP to model soil erosion in West Kameng watershed, Arunachal Pradesh,” J. Earth Syst. Sci. 129, 1–18 (2020). https://doi.org/10.1007/s12040-020-1356-6

    Article  CAS  Google Scholar 

  32. B. Das, S. Singh, S. K Jain, and P. K. Thakur, “Prioritization of sub-basins of Gomti river for soil and water conservation through morphometric and LULC analysis using remote sensing and GIS,” J. Indian Soc. Remote Sens. 49, 2503–2522 (2021). https://doi.org/10.1007/s12524-021-01410-w

    Article  Google Scholar 

  33. O. Dewitte, M. Daoudi, C. Bosco, and M. Van Den Eeckhaut, “Predicting the susceptibility to gully initiation in data-poor regions,” Geomorphology 228, 101–115 (2015). https://doi.org/10.1016/j.geomorph.2014.08.010

    Article  Google Scholar 

  34. E. H Dingle, H. D Sinclair, J. G Venditti, M. Attal, T. C. Kinnaird, M. Creed, L. Quick, J. Nittrouer, and D. Gautam, “Sediment dynamics across gravel-sand transitions: Implications for river stability and floodplain recycling”, Geology 48 (5), 468–472 (2020). https://doi.org/10.5194/egusphere-egu2020-573

    Article  Google Scholar 

  35. H. Donghao, S. Lin, F. Haoming, Z. Lili, and T. Yulu, “Identification of topographic factors for gully erosion susceptibility and their spatial modeling using machine learning in the black soil region of Northeast China,” Ecol. Indic. 143, 109376 (2022). https://doi.org/10.1016/j.ecolind.2022.109376

    Article  Google Scholar 

  36. S. Dutta, “Soil erosion, sediment yield and sedimentation of reservoir: a review,” Model. Earth Syst. Environ. 2, 123 (2016). https://doi.org/10.1007/s40808-016-0182-y

    Article  Google Scholar 

  37. E. Duulatov, X. Chen, G. Issanova, R. Orozbaev, Y. Mukanov, and A. C. Amanambu, Current and Future Trends of Rainfall Erosivity and Soil Erosion in Central Asia (Springer International Publishing, 2021). https://doi.org/10.1007/978-3-030-63509-1

  38. Y. Garosi, M. Sheklabadi, C. Conoscenti, H. Pourghasemi, and K. Van Oost, “Assessing the performance of GIS-based machine learning models with different accuracy measures for determining susceptibility to gully erosion,” Sci. Total Environ. 664, 1117–1132 (2019). https://doi.org/10.1016/j.scitotenv.2019.02.093

    Article  CAS  Google Scholar 

  39. A. Gayen and S. Saha, “Application of weights-of-evidence (WoE) and evidential belief function (EBF) models for the delineation of soil erosion vulnerable zones: a study on Pathro river basin, Jharkhand, India,” Model. Earth Syst. Environ. 3, 1123–1139 (2017). https://doi.org/10.1007/s40808-017-0362-4

    Article  Google Scholar 

  40. R. X. Ge, Y. Q. Lv, and W. H. Tao, “A statistical prediction model for healthcare and landslide sensitivity evaluation in coal mining subsidence area,” Comput. Intell. Neurosci. 2022, 1805689 (2022). https://doi.org/10.1155/2022/1805689

    Article  Google Scholar 

  41. Á. Gómez-Gutiérrez, C. Conoscenti, S. E. Angileri, E. Rotigliano, and S. Schnabel, “Using topographical attributes to evaluate gully erosion proneness (susceptibility) in two Mediterranean basins: advantages and limitations,” Nat. Hazards 79, 291–314 (2015). https://doi.org/10.1007/s11069-015-1703-0

    Article  Google Scholar 

  42. P. Goyes-Peñafiel and A. Hernandez-Rojas, “Landslide susceptibility index based on the integration of logistic regression and weights of evidence: a case study in Popayan, Colombia,” Eng. Geol. 280, 105958 (2021). https://doi.org/10.1016/j.enggeo.2020.105958

    Article  Google Scholar 

  43. F. Hallouz, M. Meddi, G. Mahé, S. Toumi, and S. E. A. Rahmani, “Erosion, suspended sediment transport and sedimentation on the wadi Mina at the Sidi M’Hamed Ben Aouda Dam, Algeria,” Water 10, 895 (2018). https://doi.org/10.3390/w10070895

    Article  Google Scholar 

  44. S. Hitouri, A. Varasano, M. Mohajane, S. Ijlil, N. Essahlaoui, S. A. Ali, A. Essahlaoui, Q. B. Pham, M. Waleed, S. K Palateerdham, and A. C Teodoro, “Hybrid machine learning approach for gully erosion map** susceptibility at a watershed scale,” ISPRS Int. J. Geo-Inf. 11 (7), 401 (2022). https://doi.org/10.3390/ijgi11070401

    Article  Google Scholar 

  45. R. Horton, “Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology,” Geol. Soc. Am. Bull. 56, 275–370 (1945). http://dx.doi.org/ (1945)56https://doi.org/10.1130/0016-7606

  46. M. Hossein Ali Zadeh, N. Kariminejad, W. Chen, H. R. Pourghasemi, M. Alinejad, A. M. Behbahani, and P. Tiefenbacherohn, “Gully headcut susceptibility modeling using functional trees, naïve Bayes tree, and random forest models,” Geoderma 342, 1–11 (2019). https://doi.org/10.1016/j.geoderma.2019.01.050

    Article  Google Scholar 

  47. O. Igwe, J. Ugwuoke Ikechukwu, S. Onwuka, and O. Ozioko, “GIS- based gully erosion susceptibility modeling, adapting bivariate statistical method and AHP approach in Gombe Town and environs Northeast Nigeria,” Geoenviron. Disasters 7, 32 (2020). https://doi.org/10.1186/s40677-020-00166-8

    Article  Google Scholar 

  48. F. Islam, M. N. Ahmad, H. T. Janjuhah, M. Ullah, I. U. Islam, G. Kontakiotis, H. D. Skilodimou, and G. D. Bathrellos, “Modeling and map** of soil erosion susceptibility of Murree, Sub-Himalayas using GIS and RS-based models,” Appl. Sci. 12 (23), 12211 (2022). https://doi.org/10.3390/app122312211

    Article  CAS  Google Scholar 

  49. K. J. Kabo-bah, T. Guoan, J. Yang Na, and L. ** using analytical hierarchy process (AHP) and fractal dimension,” Heliyon 7 (6), e07125 (2021). https://doi.org/10.1016/j.heliyon.2021.e07125

    Article  Google Scholar 

  50. M. O. Karaman, S. N. Çabuk, and E. Pekkan, “Utilization of frequency ratio method for the production of landslide susceptibility maps: Karaburun Peninsula case, Turkey,” Environ. Sci. Pollut. Res. 29, 91285–91305 (2022). https://doi.org/10.1007/s11356-022-21931-2

    Article  Google Scholar 

  51. S. Kumar and S. Gupta, “Geospatial approach in map** soil erodibility using Carto DEM- a case study in hilly watershed of Lower Himalayan Range,” J. Earth Syst. Sci. 125 (7), 1463–1472 (2016). https://doi.org/10.1007/s12040-016-0738-2

    Article  CAS  Google Scholar 

  52. R. Lal, “Soil degradation by erosion,” Land Degrad. Dev. 12, 519–539 (2001). https://doi.org/10.1002/ldr.472

    Article  Google Scholar 

  53. S. Lee and B. Pradhan, “Landslide hazard map** at Selangor, Malaysia using frequency ratio and logistic regression models,” Landslides 4, 33–41 (2007). https://doi.org/10.1007/s10346-006-0047-y

    Article  Google Scholar 

  54. F. Lucà, M. Conforti, and G. Robustelli, “Comparison of GIS-based gulling susceptibility map** using bivariate and multivariate statistics: Northern Calabria, South Italy,” Geomorphology 134 (3–4), 297–308 (2011). https://doi.org/10.1016/j.geomorph.2011.07.006

    Article  Google Scholar 

  55. N. S. Magesh, K. V. Jitheshlal, N. Chandrasekar, and K. V. **i, “GIS based morphometric evaluation of chimmini and mupily watersheds, parts of western Ghats, Thrissur district, Kerala, India,” Earth Sci. Inf. 5, 111–121 (2012). https://doi.org/10.1007/s12145-012-0101-3

    Article  Google Scholar 

  56. Y. Z. Mehrjerdi, “Develo** fuzzy TOPSIS method based on Interval valued fuzzy sets,” Int. J. Comput. Appl. 42 (14), 7–18 (2012).

    Google Scholar 

  57. S. G. Meshram, M. A. Hasan, C. Meshram, A. R. Ilderomi, S. Tirivarombo, and S. Islam, “Assessing vulnerability to soil erosion based on fuzzy best worse multi-criteria decision-making method,” Appl. Water Sci. 12, 219 (2022). https://doi.org/10.1007/s13201-022-01714-3

    Article  Google Scholar 

  58. P. Modak, M. Mandal, S. Mandi, and B. Ghosh, “Gully erosion vulnerability modeling, estimation of soil loss and assessment of gully morphology: a study from cratonic part of eastern India,” Environ. Sci. Pollut. Res. 30, 116656–116687 (2022). https://doi.org/10.1007/s11356-022-22118-5

    Article  Google Scholar 

  59. I. Moore and G. Burch, “Sediment transport capacity of sheet and rill flow: application of unit stream power theory,” Water Resour. Res. 22 (8), 1350–1360 (1986). https://doi.org/10.1029/WR022i008p01350

    Article  Google Scholar 

  60. D. Mrad, Y. Djebbar, and Y. Hammar, “Calibrating conceptual rainfall runoff models using artificial intelligence,” J. Environ. Sci. Technol. 9, 257–267 (2016). https://doi.org/10.3923/jest.2016.257.267

    Article  Google Scholar 

  61. D. Mrad, S. Dairi, S. Boukhari, and Y. Djebbar, “Applied multivariate analysis on annual rainfall in the North East of Algeria,” J. Water Clim. Change 11 (4), 1165–1176 (2020). https://doi.org/10.2166/wcc.2019.272

    Article  Google Scholar 

  62. F. Mushtaq, M. Farooq, A. S. Tirkey, and B. A. Sheikh, “Analytic hierarchy process (AHP) based soil erosion susceptibility map** in northwestern Himalayas: a case study of central Kashmir Province,” Conservation 3 (1), 32–52 (2023). https://doi.org/10.3390/conservation3010003

    Article  Google Scholar 

  63. V. H Nhu, S. Janizadeh, M. Avand, W. Chen, M. Farzin, E. Omidvar, A. Shirzadi, H. J Shahabi, J. Clague, A. Jaafari, F. Mansoorypoor, B. Thai Pham, B. B. Ahmad, and S. Lee, “GIS-based gully erosion susceptibility map**: a comparison of computational ensemble data Mining Models,” Appl. Sci. 10 (6), 2039 (2020). https://doi.org/10.3390/app10062039

    Article  CAS  Google Scholar 

  64. V. E. Nwazelibe, C. O. Unigwe, and J. C. Egbueri, “Testing the performances of different fuzzy overlay methods in GIS-based landslide susceptibility map** of Udi Province, SE Nigeria,” Catena 220, 106654 (2023b). https://doi.org/10.1016/j.catena.2022.100104

    Article  Google Scholar 

  65. R. M. O’brien, “A caution regarding rules of thumb for variance inflation factors,” Qual. Quant. 41, 673e690 (2007). https://doi.org/10.1007/s11135-0069018-6

  66. S. C Pal, R. Chakrabortty, P. Roy, I. Chowdhuri, B. Das, A. Saha, and M. Shit, “Changing climate and land use of 21st century influences soil erosion in India,” Gondwana Res. 94, 164–185 (2021). https://doi.org/10.1016/j.gr.2021.02.021

    Article  Google Scholar 

  67. B. I. Pham and I. Prakash, “Evaluation and comparison of Logit Boost Ensemble, Fisher’s Linear discriminant analysis, logistic regression and support vector machines methods for landslide susceptibility map**”, Geocarto Int. 34 (3), 316–333 (2019). https://doi.org/10.1080/10106049.2017.1404141

    Article  Google Scholar 

  68. C. P. Poudyal, C. Chang, H. J. Oh, and S. Lee, “Landslide susceptibility maps comparing frequency ratio and artificial neural networks: a case study from the Nepal Himalaya,” Environ. Earth Sci. 61, 1049–1064 (2010). https://doi.org/10.1007/s12665-009-0426-5

    Article  Google Scholar 

  69. F. Radwan, A. A. Alazba, M. Alotaibi, and A. Mossad, “Site suitability analysis for desalination plants based on the complementarity of GIS, RST, MCE, and spatial AHP in arid and semi-arid regions,” Arabian J. Geosci. 15, 1763 (2022). https://doi.org/10.1007/s12517-022-11038-w

    Article  Google Scholar 

  70. A. Rahimian Boogar, H. Salehi, H. R. Pourghasemi, and T. Blaschke, “Predicting habitat suitability and conserving Juniperus spp. habitat using SVM and maximum entropy machine learning techniques,” Water 11 (10), 2049 (2019). https://doi.org/10.3390/w11102049

    Article  Google Scholar 

  71. M. R. Rahman, Z. Shi, and C. Chongfa, “Soil erosion hazard evaluation-An integrated use of remote sensing, GIS and statistical approaches with biophysical parameters towards management strategies,” Ecol. Modell. 220 (13–14), 1724–1734 (2009). https://doi.org/10.1016/j.ecolmodel.2009.04.004

    Article  Google Scholar 

  72. O Rahmati, A. Haghizadeh, H. R. Pourghasemi, and F. Noormohamadi, “Gully erosion susceptibility map**: the role of GIS-based bivariate statistical models and their comparison,” Nat. Hazards 82 (2), 1231–1258 (2016). https://doi.org/10.1007/s11069-016-2239-7

    Article  Google Scholar 

  73. O. Rahmati, Z. Kalantari, C. S Ferreira, W. Chen, S. M. Soleimanpour, M. Kapovic-Solomun, S. Seifollahi-Aghmiuni, N. Ghajarnia, and N. K. Kazemabady, “Contribution of physical and anthropogenic factors to gully erosion initiation,” Catena 210, 105925 (2022). https://doi.org/10.1016/j.catena.2021.105925

    Article  Google Scholar 

  74. V. Ramesh and S. S. Iqbal, “Urban flood susceptibility zonation map** using evidential belief function, frequency ratio and fuzzy gamma operator Models in GIS: a case study of Greater Mumbai, Maharashtra, India,” Geocarto Int. 37, 581–606 (2022). https://doi.org/10.1080/10106049.2020.1730448

    Article  Google Scholar 

  75. S. V. Razavi-Termeh, A. Sadeghi-Niaraki, and S. M. Choi, “Gully erosion susceptibility map** using artificial intelligence and statistical models,” Geomatics, Nat. Hazards Risk 11 (1), 821–844 (2020). https://doi.org/10.1080/19475705.2020.1753824

    Article  Google Scholar 

  76. F. K. Rengers and G. E. Tucker, “Analysis and modeling of gully headcut dynamics, North American high plains,” J. Geophys. Res.-Earth Surf. 119, 983–1003 (2014). https://doi.org/10.1002/2013JF002962

    Article  Google Scholar 

  77. J. Roy and D. S. Saha, “GIS-based gully erosion susceptibility evaluation using frequency ratio, cosine amplitude and logistic regression ensemble with fuzzy logic in Hinglo River Basin, India,” Remote Sens. Appl.: Soc. Environ. 15, 100247 (2019). https://doi.org/10.1016/j.rsase.2019.100247

    Article  Google Scholar 

  78. P. Roy, S. Chandra Pal, A. Arabameri, R. Chakrabortty, B. Pradhan, I. Chowdhuri, S. Lee, and D. Tien Bui, “Novel ensemble of multivariate adaptive regression spline with spatial logistic regression and boosted regression tree for gully erosion susceptibility,” Remote Sens. 12 (20), 3284 (2020). https://doi.org/10.3390/rs12203284

    Article  Google Scholar 

  79. T. L. Saaty, The Analytic Hierarchy Process (McGraw-Hill, New York, 1980).

    Google Scholar 

  80. S. Saha, J. Roy, A. Arabameri, T. Blaschke, and D. Tien Bui, “Machine learning-based gully erosion susceptibility map**: a case study of eastern India,” Sensors 20, 1313 (2020). https://doi.org/10.3390/s20051313

    Article  CAS  Google Scholar 

  81. C. Salhi, B. Touaibia, A. Zeroual, N. Benblida, and A. Assani, “Evaluation of soil erosion in Northern Algeria watershed using SWAT and RUSLE models,” Geocarto Int. 37 (26), 11559–11589 (2022). https://doi.org/10.1080/10106049.2022.2060314

    Article  Google Scholar 

  82. M. Selkimäki and J. R. Gonzàlez-Olabarria, “Assessing gully erosion occurrence in forest lands in Catalonia (Spain),” Land Degrad. Dev. 28 (2), 616–627 (2016). https://doi.org/10.1002/ldr.2533

    Article  Google Scholar 

  83. S. Sengupta, S. k. Mohinuddin, and M. Arif, “Sub-watershed prioritization for soil erosion potentiality estimation in Tenughat catchment, India,” Geocarto Int. 37 (25), 9160–9189 (2022). https://doi.org/10.1080/10106049.2021.2017008

    Article  Google Scholar 

  84. H. Shahabi, M. Hashim, and B. B. Ahmad, “Remote sensing and GIS-based landslide susceptibility map** using frequency ratio, logistic regression and fuzzy logic methods at the central Zab basin, Iran,” Environ. Earth Sci. 73 (12), 8647–8668 (2015). https://doi.org/10.1007/s12665-015-4028-0

    Article  Google Scholar 

  85. N. Sharma, A. Kaushal, A. Yousuf, A. Sood, S. Kaur, and R. Sharda “Geospatial technology for assessment of soil erosion and prioritization of watersheds using RUSLE model for lower Sutlej sub-basin of Punjab, India,” Environ. Sci. Pollut. Res. 30, 515–531 (2023). https://doi.org/10.1007/s11356-022-22152-3

    Article  Google Scholar 

  86. P. K. Shit, H. R. Sankar Pourghasemi, and G. S. Bhunia, “Gully erosion studies from India and surrounding regions,” in Advances in Science, Technology & Innovation (2020), pp. 133–146. https://doi.org/10.1007/978-3-030-23243-6

  87. M. Singh, A. Yousuf, H. Singh, S. Singh, K. Hartsch, M. von Werner, A. H. Almaliki, A. Y. Elnaggar, E. E. Hussein, and H. R. Ali, “Simulation accuracy of erosion-3D model for estimation of runoff and sediment yield from micro-watersheds,” Water 14, 280 (2022). https://doi.org/10.3390/w14030280

    Article  CAS  Google Scholar 

  88. B. G. Sinshaw, A. M. Belete, A. K. Tefera, A. B. Dessie, B. B. Bizuneh, H. T. Alem, S. B. Atanaw, D. G. Eshete, T. G. Wubetu, H. B. Atinkut, and M. A. Moges, “Prioritization of potential soil erosion susceptibility region using fuzzy logic and analytical hierarchy process, upper Blue Nile Basin, Ethiopia,” Water-Energy Nexus 4, 10–24 (2021). https://doi.org/10.1016/j.wen.2021.01.001

    Article  Google Scholar 

  89. V. Souchère, L. Millair, J. Echeverria, F. Bousquet, C. Le Page, and M. Étienne, “Co-constructing with stakeholders a role-playing game to initiate collective management of erosive runoff risks at the watershed scale,” Environ. Modell. Software 25, 11 (2009). https://doi.org/10.1016/j.envsoft.2009.03.002

    Article  Google Scholar 

  90. A. Teshome and A. Halefom, “Map** of Soil Erosion Hotspot Areas Using GIS Based-MCDA Techniques in South Gondar Zone, Amhara Region, Ethiopia”, World News Nat. Sci. 24, 215–238 (2019).

    Google Scholar 

  91. A. Thompsell, Soil Erosion in Africa. thoughtco.com/ soil-erosion-in-africa-43352. Cited April 5, 2023.

  92. D. Tien Bui, P. Tsangaratos, V. T. Nguyen, N. Van Liem, and P. T. Trinh, “Comparing the prediction performance of a deep learning neural network model with conventional machine learning models in landslide susceptibility assessment,” Catena 188, 104426 (2020). https://doi.org/10.1016/j.catena.2019.104426

    Article  Google Scholar 

  93. A. K. Tripathi, S. Agrawal, and R. D. Gupta, “Comparison of GIS-based AHP and fuzzy AHP methods for hospital site selection: a case study for Prayagraj City, India,” Geo J. 87, 3507–3528 (2022). https://doi.org/10.1007/s10708-021-10445-y

    Article  Google Scholar 

  94. C. Valentin, J. Poesen, and Yong Li “Gully erosion: impacts, factors and control,” Catena 63 (2–3), 132–153 (2005). https://doi.org/10.1016/j.catena.2005.06.001

    Article  CAS  Google Scholar 

  95. P. J. M. Van Laarhoven and W. Pedrycz, “A fuzzy extension of Saaty’s priority theory,” Fuzzy Sets Syst. 11 (1–3), 229–241 (1983).

    Article  Google Scholar 

  96. Z. Wang, G. Zhang, C. Wang, and S. **ng, “Assessment of the gully erosion susceptibility using three hybrid models in one small watershed on the Loess Plateau,” Soil Tillage Res. 223, 105481 (2022). https://doi.org/10.1016/j.still.2022.105481

    Article  Google Scholar 

  97. J. P. Wilson and J. C. Gallant, Terrain Analysis: Principles and Applications (John Wiley and Sons Inc., New York, 2000).

    Google Scholar 

  98. H. Zabihi, M. Alizadeh, P. Kibet Langat, M. Karami, H. Shahabi, A. Ahmad, M. Nor Said, and S. Lee, “GIS multi-criteria analysis by ordered weighted averaging (OWA): toward an integrated citrus management strategy,” Sustainability 11, 1009 (2019). https://doi.org/10.3390/su11041009

    Article  Google Scholar 

  99. M. Zabihi, F. Mirchooli, A. Motevalli, A. K. Darvishan, H. R. Pourghasemi, M. A. Zakeri, and F. Sadighi, “Spatial modelling of gully erosion in Mazandaran Province, northern Iran,” Catena 161, 1–13 (2018). https://doi.org/10.1016/j.catena.2017.10.010

    Article  Google Scholar 

  100. L. A. Zadeh, “Fuzzy sets,” Inf. Control 8 (3), 338–353 (1965).

    Article  Google Scholar 

  101. X. Zhang, J. Fan, Q. Liu, and D. **ong, “The contribution of gully erosion tototal sediment production in a small watershed in Southwest China,” Phys. Geogr. 39, 246–263 (2018). https://doi.org/10.1080/02723646.2017.1356114

    Article  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Mrad.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mrad, D., Boukhari, S., Dairi, S. et al. Map** the Potential for Erosion Gullies Using Frequency Ratio and Fuzzy Analytical Hierarchy Process: Case Study Medjerda Basin, Northeast Algeria. Eurasian Soil Sc. (2024). https://doi.org/10.1134/S1064229323603530

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1064229323603530

Keywords:

Navigation