Log in

Evaluation of Direction and Mechanisms of Biochar Application Effect on Substrate-Induced Soil Respiration in a Long-Term Laboratory Experiment

  • ORGANIC MATTER AND MICROBIAL ACTIVITY OF SOIL
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

In a laboratory experiment, the effect of biochar (BC) on substrate-induced respiration (SIR) of soils was studied. In the experiment, 10 samples of BC obtained from woody and herbaceous materials in two modes of pyrolysis were used. The SIR was determined after 3 days and after 3 and 6 months of incubation. During short-term incubation, no effect of BC on SIR was observed. The exception was the corn-based BС application, when there was a 34.6% increase in SIR. After incubation for 3 months, a significant increase in SIR was found (from 30.4 to 54.8%) for five BCs were added. After incubation for 6 months, a significant increase in SIR (from 30.4 to 65.9%) was observed when eight BCs were applied. LASSO regression and 23 parameters of BC properties were used as potential predictors to evaluate BC properties that affect SIR. It was found that during three-day incubation, the following properties of BС have a positive effect on SIR: the contents of oxidizable organic matter (OM) and exchangeable calcium and the pH of water suspension; the content of exchangeable sodium had a weak negative effect. At incubation for 3 months there is a positive effect of oxidized OM; and after 6 months, the ash content. Since only a positive statistically significant effect of BC on SIR was observed in the experiments, it was concluded that in order to objectively assess the efficiency of BC use for CO2 sequestration in soils, balance calculations are necessary. In these calculations, along with the amount of stable carbon introduced into soils with BC, a potential increase in CO2 emissions from soils due to the activation of soil saprophytic microbiota should be taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. N. D. Anan’eva, E. V. Blagodatskaya, D. B. Orlinskii, and T. N. Myakshina, “Methodological aspects of determining the rate of substrate-induced respiration of soil microorganisms,” Pochvovedenie, No. 11, 72–77 (1993).

    Google Scholar 

  2. N. D. Ananyeva, E. A. Susyan, and E. G. Gavrilenko, “Determination of the soil microbial biomass carbon using the method of substrate-induced respiration,” Eurasian Soil Sci. 44 (11), 1215–1221 (2011).

    Article  Google Scholar 

  3. A. I. Zhuravleva, A. S. Yakimov, V. A. Demkin, and E. V. Blagodatskaya, “Mineralization of soil organic matter initiated by the application of an available substrate to the profiles of surface and buried podzolic soils,” Eurasian Soil Sci. 45 (4), 435–444 (2012).

    Article  Google Scholar 

  4. B. M. Kogut, V. M. Semenov, Z. S. Artem’eva, and N. N. Danchenko, “Dehumusification and soil carbon sequestration,” Agrokhimiya, No. 5, 3–13 (2021). https://doi.org/10.31857/S0002188121050070

    Article  Google Scholar 

  5. P. V. Krasilnikov, “Stable carbon compounds in soils: their origin and functions,” Eurasian Soil Sci. 48 (9), 997–1008 (2015). https://doi.org/10.1134/S1064229315090069

    Article  Google Scholar 

  6. V. N. Kudeyarov, “Nitrous oxide emission from fertilized soils: an analytical review,” Eurasian Soil Sci. 53 (10), 1396–1407 (2020). https://doi.org/10.1134/S1064229320100105

    Article  Google Scholar 

  7. V. N. Kudeyarov, “Soil-biogeochemical aspects of arable farming in the Russian Federation,” Eurasian Soil Sci. 52 (1), 94–104 (2019). https://doi.org/10.1134/S1064229319010095

    Article  Google Scholar 

  8. V. N. Kudeyarov, “Current state of the carbon budget and the capacity of Russian soils for carbon sequestration,” Eurasian Soil Sci. 48 (9), 923–933 (2015). https://doi.org/10.1134/S1064229315090070

    Article  Google Scholar 

  9. E. Ya. Rizhiya, N. P. Buchkina, I. M. Mukhina, A. S. Belinets, and E. V. Balashov, “Effect of biochar on the properties of loamy sand Spodosol soil samples with different fertility levels: a laboratory experiment,” Eurasian Soil Sci. 48 (2), 192–200 (2015). https://doi.org/10.1134/S1064229314120084

    Article  Google Scholar 

  10. E. V. Smirnova, K. G. Giniyatullin, A. A. Valeeva, and E. S. Vaganova, “Pyrouglis as promising soil ameliorants: assessment of the content and spectral properties of their lipid fractions,” Uch. Zap. Kazan. Univ. Ser. Est. Nauki, No. 160, 259–275 (2018).

    Google Scholar 

  11. E. Shul’ts, B. Deller, and G. Khofman, Methods for Studying Soil Organic Matter (Rossel’khozakademiya, Moscow, 2005) [in Russian].

    Google Scholar 

  12. J. A. Alburquerque, J. M. Calero, V. Barron, J. Torrent, M. C. Campillo, A. Gallardo, and R. Villar, “Effects of biochars produced from different feedstocks on soil properties and sunflower growths,” J. Plant Nutr. Soil Sci. 177, 16–25 (2014). https://doi.org/10.1002/jpln.201200652

    Article  Google Scholar 

  13. I. F. E. Anderson and K. M. Domsch, “A physiological method for the quantitative measurement of microbial biomass in soils,” Soil Biol. Biochem. 10 (3), 215–221 (1978).

    Article  Google Scholar 

  14. N. H. Batjes, “Total carbon and nitrogen in the soils of the world,” Eur. J. Soil Sci. 65, 10–21 (2014). https://doi.org/10.1111/EJSS.12114_2

    Article  Google Scholar 

  15. N. H. Batjes and E. M. Bridges, “Potential emissions of radiatively active gases from soil to atmosphere with special reference to methane: development of a global database (WISE),” J. Geophys. Res. 99, 16479–16489 (1994). https://doi.org/10.1029/93JD03278

    Article  Google Scholar 

  16. E. Blagodatskaya and Y. Kuzyakov, “Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review,” Biol. Fertil. Soils 45, 115–131 (2008).

    Article  Google Scholar 

  17. E. Blagodatskaya and Y. Kuzyakov, “Active microorganisms in soil: critical review of estimation criteria and approaches,” Soil Biol. Biochem. 67, 192–211 (2013). https://doi.org/10.1016/j.soilbio.2013.08.024

    Article  Google Scholar 

  18. S. Brodowski, W. Amelung, L. Haumaiera, C. Abetz, and W. Zech, “Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy,” Geoderma 128, 116–129 (2005). https://doi.org/10.1016/j.geoderma.2004.12.019

    Article  Google Scholar 

  19. S. D. C. Case, N. P. McNamara, D. S. Reay, and J. Whitaker, “Can biochar reduce soil greenhouse gas emissions from a miscanthus bioenergy crop?,” GCB Bioenergy 6, 76–89 (2014). https://doi.org/10.1111/gcbb.1205

    Article  Google Scholar 

  20. A. Chambers, R. Lal, and R. Paustian, “Soil carbon sequestration potential of US croplands and grasslands: implementing the 4 per thousand initiative,” J. Soil Water Conserv. 71, 68–74 (2016). https://doi.org/10.2489/jswc.71.3.68A

    Article  Google Scholar 

  21. K. Y. Chan, A. Bowman, and A. Oates, “Oxidizable organic carbon fractions and soil quality changes in an Oxic Paleustalf under different pature leys,” Soil Sci. 166, 61–67 (2001).

    Article  Google Scholar 

  22. R. Chatterjee, B. Sajjadi, W-Y. Chen, D. L. Mattern, N. Hammer, V. Raman, A. Dorris, “Effect of pyrolysis temperature on physico chemical properties and acoustic-based amination of biochar for efficient CO2 adsorption,” Front. Energy Res. 8, 85 (2020). https://doi.org/10.3389/fenrg.2020.00085

    Article  Google Scholar 

  23. C-H. Cheng, J. Lehmann, J. E. Thies, S. D. Burton, and M. H. Engelhard, “Oxidation of black carbon by biotic and abiotic processes,” Org. Geochem. 37, 1477–1488 (2006).

    Article  Google Scholar 

  24. A. Cross and S. P. Sohi, “The priming potential of biochar products in relation to labile carbon contents and soil organic matter status,” Soil Biol. Biochem. 43, 2127–2134 (2011).

    Article  Google Scholar 

  25. S. E. Crow, K. Lajtha, R. D. Bowden, Y. Yano, J. B. Brant, B. A. Caldwell, and E. W. Sulzman, “Increased coniferous needle inputs accelerate decomposition of soil carbon in an old-growth forest,” For. Ecol. Manage. 258, 2224–2232 (2009). https://doi.org/10.1016/j.foreco.2009.01.014

    Article  Google Scholar 

  26. F. Ding, L. Van Zwieten, W. Zhang, Z. Weng, S. Shi, J. Wang, and J. Meng, “A meta-analysis and critical evaluation of influencing factors on soil carbon priming following biochar amendment,” J. Soils Sediments 18 (4), (2018). https://doi.org/10.1007/s11368-017-1899-6

  27. Y. Ding, Y. Liu, and S. Liu, “Biochar to improve soil fertility. A review,” Agron. Sustainable Dev. 36, 36 (2016). https://doi.org/10.1007/s13593-016-0372-z

    Article  Google Scholar 

  28. Y. Fang, B. P. Singh, and B. Singh, “Temperature sensitivity of biochar and native carbon mineralization in biochar-amended soils,” Agric. Ecosyst. Environ. 191, 158–167 (2014).

    Article  Google Scholar 

  29. J. W. Gaskin, C. Steiner, K. Harris, K. C. Das, and B. Bibens, “Effect of low-temperature pyrolysis conditions on biochar for agricultural use,” Am. Soc. Agric. Biol. Eng. 51, 2061–2069 (2008).

    Google Scholar 

  30. K. G. Giniyatullin, E. V. Smirnova, B. R. Grigoryan, and A. A. Valeeva, “The possibility of use research methods of soil organic matter for assess the biochar properties,” Res. J. Pharm., Biol. Chem. Sci. 6 (4), 194–201 (2015).

    Google Scholar 

  31. B. Glaser, J. Lehmann, and W. Zech, “Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - a review,” Biol. Fertil. Soils 35, 219–230 (2002). https://doi.org/10.1007/s00374-002-0466-4

    Article  Google Scholar 

  32. A. Gross, T. Bromm, and B. Glaser, “Soil organic carbon sequestration after biochar application: a global meta-analysis,” Agronomy 11, 2474 (2021). https://doi.org/10.3390/agronomy11122474

    Article  Google Scholar 

  33. L. Haumaier and W. Zech, “Black carbon–possible source of highly aromatic components of soil humic acids,” Org. Geochem. 23, 191–196 (1995). https://doi.org/10.1016/0146-6380(95)00003-W

    Article  Google Scholar 

  34. IPCC. Intergovernmental Panel on Climate Change. Special Report: Climate Change and Land (2019).

  35. S. Islam, B. C. Ang, S. Gharehkhani, and A. B. M. Afifi, “Adsorption capability of activated carbon synthesized from coconut shell,” Carbon 20, 1–9 (2016). https://doi.org/10.5714/cl.2016.20.001

    Article  Google Scholar 

  36. G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning with Applications in R (Springer, New York, 2013).

    Google Scholar 

  37. P. Jiang, L. Q. **ao, and X. Wan, “Research progress on microbial carbon sequestration in soil: a review,” Eurasian Soil Sci. 55, 1395–1404 (2022). https://doi.org/10.1134/S1064229322100064

    Article  Google Scholar 

  38. S. H. Jien, C. C. Wang, C. H. Lee, and T. Y. Lee, “Stabilization of organic matter by biochar application in compost-amended soils with contrasting pH values and textures (Switzerland),” Sustainability 7, 13317–13333 (2015). https://doi.org/10.3390/su71013317

    Article  Google Scholar 

  39. D. L. Jones, D. V. Murphy, M. Khalid, W. Ahmad, G. Edwards-Jones, and T. H. DeLuca, “Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated,” Soil Biol. Biochem. 43, 1723–1731 (2011). https://doi.org/10.1016/j.soilbio.2011.04.018

    Article  Google Scholar 

  40. A. Kapoor, R. Sharma, A. Kumar, and S. Sepehya, “Biochar as a means to improve soil fertility and crop productivity: a review,” J. Plant Nutr. 45 (15), 2380–2388 (2022). https://doi.org/10.1080/01904167.2022.2027980

    Article  Google Scholar 

  41. A. Keith, B. Singh, and B. P. Singh, “Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil,” Environ. Sci. Technol. 45, 9611–9618 (2011).

    Article  Google Scholar 

  42. S. Kloss, F. Zehetner, B. Wimmer, J. Buecker, F. Rempt, and G. Soja, “Biochar application to temperate soils: effects on soil fertility and crop growth under greenhouse conditions,” J. Plant Nutr. Soil Sci. 177, 3–15 (2014). https://doi.org/10.1002/jpln.201200282

    Article  Google Scholar 

  43. M. M. Kononova and N. P. Bel’cikova, “Speed up methods for humus determination,” Pochvovedenie 25, 125–129 (1961).

    Google Scholar 

  44. P. M. Kopittke, N. W. Menzies, P. Wang, B. A. McKenna, and E. Lombi, “Soil and the intensification of agriculture for global food security,” Environ. Int. 1132, 105078 (2019). https://doi.org/10.1016/j.envint.2019.105078

    Article  Google Scholar 

  45. A. S. Kurt, “Impact of biochar field aging on laboratory greenhouse gas production potentials,” GCB Bioenergy 5, 165–176 (2013). https://doi.org/10.1111/gcbb.12005

    Article  Google Scholar 

  46. Y. Kuzyakov, I. Subbotina, H. Chen, I. Bogomolova, and X. Xu, “Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling,” Soil Biol. Biochem. 41, 210–219 (2009).

    Article  Google Scholar 

  47. D. A. Laird, V. A. Chappell, D. A. Martens, R. L. Wershaw, and M. Thompson, “Distinguishing black carbon from biogenic humic substances in soil clay fractions,” Geoderma 143, 115–122 (2008). https://doi.org/10.1016/j.geoderma.2007.10.025

    Article  Google Scholar 

  48. R. Lal, “Beyond COP 21: potential and challenges of the “4 per Thousand” initiative," J. Soil Water Conserv. 71, 68A–74A (2016). https://doi.org/10.2489/jswc71.1.20A

    Article  Google Scholar 

  49. R. Lal, “Challenges and opportunities in soil organic matter research,” Eur. J. Soil Sci. 60, 158–169 (2009). https://doi.org/10.1111/j.1365-2389.2008.01114.x

    Article  Google Scholar 

  50. J. M. Lee, D. G. Park, S. S. Kang, E. J. Choi, H. S. Gwon, H. S. Lee, and S. I. Lee, “Short-term effect of biochar on soil organic carbon improvement and nitrous oxide emission reduction according to different soil characteristics in agricultural land: a laboratory experiment,” Agronomy 12, 1879 (2022). https://doi.org/10.3390

    Article  Google Scholar 

  51. J. Lehmann, J. Gaunt, and M. Rondon, “Bio-char sequestration in terrestrial ecosystems—a review,” Mitigation Adapt. Strategies Global Change 11, 403–427 (2006). https://doi.org/10.1007/s11027-005-9006-5

    Article  Google Scholar 

  52. J. Lehmann and S. Joseph, Biochar for Environmental Management Science Technology and Implementation (Routledge, New York, 2015).

    Book  Google Scholar 

  53. J. Lehmann, M. C. Rillig, J. Thies, C. A. Masiello, W. C. Hockaday, and D. Crowley, “Biochar effects on soil biota-a review,” Soil Biol. Biochem. 43, 1812–1836 (2011). https://doi.org/10.1016/j.soilbio.2011.04.022

    Article  Google Scholar 

  54. B. Liang, J. Lehmann, S. P. Sohi, J. E. Thies, B. O' Neill, L. Trujillo, J. Gaunt, D. Solomon, J. Grossman, E. G. Neves, and F. J. Luizão, “Black carbon affects the cycling of non-black carbon in soil,” Org. Geochem. 41, 206–213 (2010). https://doi.org/10.1016/j.orggeochem.2009.09.007

    Article  Google Scholar 

  55. X. H. Liu and X. C. Zhang, “Effect of biochar on pH of alkaline soils in the loess plateau: results from incubation experiments,” Int. J. Agric. Biol. 14, 745–750 (2012).

    Google Scholar 

  56. Z. Liu, P. McNamara, and D. Zitomer, “Autocatalytic pyrolysis of wastewater biosolids for product upgrading,” Environ. Sci. Technol. 51, 9808–9816 (2017). https://doi.org/10.1021/acs.est.7b02913

    Article  Google Scholar 

  57. W. Lu and H. Zhang, “Response of biochar induced carbon mineralization priming effects to additional nitrogen in a sandy loam soil,” Appl. Soil Ecol. 96, 165–171 (2015). https://doi.org/10.5194/se-5-585-2014

    Article  Google Scholar 

  58. Y. Luo, M. Durenkamp, M. De Nobili, Q. Lin, and P. C. Brookes, “Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH,” Soil Biol. Biochem. 43, 2304–2314 (2011).

    Article  Google Scholar 

  59. Y. Luo, M. Durenkamp, M. De Nobili, Q. Lin, B. J. Devonshire, and P. C. Brookes, “Microbial biomass growth, following incorporation of biochars produced at 350°C or 700°C, in a silty-clay loam soil of high and low pH,” Soil Biol. Biochem. 57, 513–523 (2013). https://doi.org/10.1016/j.soilbio.2012.10.033

    Article  Google Scholar 

  60. Y. Luo, Q. Lin, and M. Durenkamp, “Does repeated biochar incorporation induce further soil priming effect?” J. Soils Sediments 18, 128–135 (2018). https://doi.org/10.1007/s11368-017-1705-5

    Article  Google Scholar 

  61. L. M. Macdonald, M. Farrell, L. V. Zwieten, et al., “Plant growth responses to biochar addition: an Australian soils perspective,” Biol. Fertil. Soils 50, 1035–1045 (2014). https://doi.org/10.1007/s00374-014-0921-z

    Article  Google Scholar 

  62. B. Maestrini, P. Nannipieri, and S. Abiven, “A meta-analysis on pyrogenic organic matter induced priming effect,” Global Change Biol. Bioenergy 7, 577–590 (2015). https://doi.org/10.1111/gcbb.12194

    Article  Google Scholar 

  63. B. Maestrini, A. M. Herrmann, P. Nannipieri, M. W. I. Schmidt, and S. Abiven, “Ryegrass-derived pyrogenic organic matter changes organic carbon and nitrogen mineralization in a temperate forest soil,” Soil Biol. Biochem. 69, 291–301 (2014). https://doi.org/10.1016/j.soilbio.2013.11.013

    Article  Google Scholar 

  64. J. Major, J. Lehmann, M. Rondon, and C. Goodale, “Fate of soil-applied black carbon: downward migration, leaching and soil respiration,” Global Change Biol. 16, 1366–1379 (2010). https://doi.org/10.1111/j.1365-2486.2009.02044.x

    Article  Google Scholar 

  65. S. Majumder, S. Neogi, T. Dutta, M. A. Powel, and P. Banik, “The impact of biochar on soil carbon sequestration: meta-analytical approach to evaluating environmental and economic advantages” J. Environ. Manage. 15, 109466 (2019). https://doi.org/10.1016/j.jenvman.2019.109466

    Article  Google Scholar 

  66. D. Marquardt and R. Snee, “Ridge regression in practice,” Am. Stat. 29, 3–20 (1975).

    Google Scholar 

  67. B. Minasny, B. P. Malone, A. B. Mcbratney, D. A. Angers, and D. Arrouays, “Soil carbon 4 per mille,” Geoderma 292, 59–86 (2017). https://doi.org/10.1016/j.geoderma.2017.01.002

    Article  Google Scholar 

  68. C. Naisse, C. Girardin, B. Davasse, A. Chabbi, and C. Rumpel, “Effect of biochar addition on C mineralisation and soil organic matter priming in two subsoil horizons,” J. Soils Sediments 15, 825–832 (2014).

    Article  Google Scholar 

  69. W. L. Nam, X. Y. Phang, M. H. Su, R. K. Liew, N. L. Ma, M. H. N. B. Rosli, and S. S. Lam, “Production of bio-fertilizer from microwave vacuum pyrolysis of palm kernel shell for cultivation of Oyster mushroom Pleurotus ostreatus,” Sci. Total Environ. 624, 9–16 (2018). https://doi.org/10.1051/e3sconf/20172200122

    Article  Google Scholar 

  70. B. Nguyen, J. Lehmann, W. C. Hockaday, S. Joseph, and C. A. Masiello, “Temperature sensitivity of black carbon decomposition and oxidation,” Environ. Sci. Technol. 44, 3324–3331 (2010).

    Article  Google Scholar 

  71. J. Padarian, B. Minasny, A. McBratney, and P. Smith, “Soil carbon sequestration potential in global croplands,” PeerJ 10, 13740 (2022). https://doi.org/10.7717/peerj.13740

    Article  Google Scholar 

  72. M. Pansu and J. Gautheyrou, Handbook of Soil Analysis. Mineralogical, Organic and Inorganic Methods (Springer-Verlag, Heidelberg, 2006).

    Book  Google Scholar 

  73. A. Piccolo, R. Spaccini, V. Cozzolino, A. Nuzzo, M. Droso, L. Zavattaro, C. Grignani, E. Puglisi, and M. Trevisan, “Effective carbon sequestration in Italian agricultural soils by in situ polymerization of soil organic matter under biomimetic photo-catalysis,” Land Degrad. Dev. 29, (2018). https://doi.org/10.1002/ldr.2877

  74. C. M. Preston and M. W. I. Schmidt, “Black pyrogenic. carbon in boreal forests: a synthesis of current knowledge and uncertainties,” in Biogeosciences Discussions (European Geosciences Union, 2006), Vol. 3, pp. 211–271.

    Google Scholar 

  75. J. Sanderman, T. Hengl, and G. Fiske, “Soil carbon debt of 12,000 years of human land use,” Proc. Natl. Acad. Sci. U. S. A. 114, 201706103 (2017). https://doi.org/10.1073/pnas.1706103114

    Article  Google Scholar 

  76. M. Schmidt and A. Noack, “Black carbon in soils and sediments: analysis, distribution, implications, and current challenges,” Global Biogeochem. Cycles 14, 777–793 (2000).

    Article  Google Scholar 

  77. V. Yu. Shahnazarova, N. E. Orlova, E. E. Orlova, et al., “Influence of biochar on the taxonomic composition and structure of prokaryotic communities in agrosoddy-podzolic soil,” Agric. Biol. 55, 163–173 (2020). https://doi.org/10.15389/agrobiology.2020.1.163rus

    Article  Google Scholar 

  78. J. O. Skjemstad, D. C. Reicosky, A. R. Wilts, and J. A. McGowan, “Charcoal carbon in U.S. agricultural soils,” Soil Sci. Soc. Am. J. 66, 1249–1255 (2002). https://doi.org/10.2136/sssaj2002.1249

    Article  Google Scholar 

  79. P. Smith, J. F. Soussana, D. Angers, L. Schipper, and C. Chenu, “How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal,” Global Change Biol 26, 219–241 (2020). https://doi.org/10.1111/gcb.14815

    Article  Google Scholar 

  80. S. Sohi, E. Krull, E. Lopez-Capel, and R. Bol, “A review of biochar and its use and function in soil,” Adv. Agron. 105, 47–82 (2010). https://doi.org/ 10.05002-9https://doi.org/10.1016/S0065-2113

  81. R. Spaccini, A. Piccolo, P. Conte, G. Haberhauer, and M. H. Gerzabek, “Increased soil organic carbon sequestration through hydrophobic protection by humic substances,” Soil Biol. Biochem. 34, 1839–1851 (2002). https://doi.org/ 02.00197-9https://doi.org/10.1016/S0038-0717

  82. X. Sun, R. Shan, X. Li, J. Pan, X. Liu, R. Deng, and J. Song, “Characterization of 60 types of Chinese biomass waste and resultant biochars in terms of their candidacy for soil application,” GCB Bioenergy 9, 1423–1435 (2017). https://doi.org/10.1111/gcbb.12435

    Article  Google Scholar 

  83. T. Sun, W. Feng, L. Shi, et al., “Microbial growth rates, carbon use efficiency and enzyme activities during post-agricultural soil restoration,” Catena 214, 106226 (2022). https://doi.org/10.1016/j.catena.2022.106226

    Article  Google Scholar 

  84. Y. Tang, W. Gao, K. Cai, Y. Chen, C. Li, X. Lee, H. Cheng, Q. Zhang, and J. Cheng, “Effects of biochar amendment on soil carbon dioxide emission and carbon budget in the karst region of southwest China,” Geoderma 385, 114895 (2021). https://doi.org/10.1016/j.geoderma.2020.114895

    Article  Google Scholar 

  85. S. Thiessen, G. Gleixner, T. Wutzler, and M. Reichstein, “Both priming and temperature sensitivity of soil organic matter decomposition depend on microbial biomass–an incubation study,” Soil Biol. Biochem. 57, 739–748 (2013). https://doi.org/10.1016/j.soilbio.2012.10.029

    Article  Google Scholar 

  86. R. Tibshirani, “Regression shrinkage and selection via the lasso,” J. Royal Stat. Soc. Ser. B Methodol. 58 (1), 267–288 (1996).

    Google Scholar 

  87. H. N. Tran, S. J. You, and H. P. Chao, “Effect of pyrolysis temperatures and times on the adsorption of cadmium onto orange peel derived biochar,” Waste Manage. Res. 34, 129–138 (2015). https://doi.org/10.1177/0734242X15615698

    Article  Google Scholar 

  88. USDA-NRCS. Soil Survey Laboratory Methods Manual (Soil Survey Investigations, 1996), Report No. 42, Version 3.0, p. 693

  89. A. A. Valeeva, B. R. Grigoryan, M. R. Bayan, K. G. Giniyatullin, A. E. Vandyukov, and V. G. Evtygin, “Adsorption of methylene blue by biochar produced through torrefaction and slow pyrolysis from switchgrass,” Res. J. Pharm., Biol. Chem. Sci. 6 (4), 8–17.

  90. L. Van Zwieten, S. Kimber, S. Morris, et al., “Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility,” Plant Soil. 327, 235–246 (2009).

    Article  Google Scholar 

  91. J. Wang, Z. **ong, and Y. Kuzyakov, “Biochar stability in soil: meta-analysis of decomposition and priming effects,” GCB Bioenergy 8, 512–523 (2016). https://doi.org/10.1111/gcbb.12266

    Article  Google Scholar 

  92. D. Wardle, O. Zackrisson, and M. C. Nilsson, “The charcoal effect in Boreal forests: mechanisms and ecological consequences,” Oecologia 115, 419–426 (1998). https://doi.org/10.1007/s004420050536

    Article  Google Scholar 

  93. A. Watzinger, S. Feichtmair, B. Kitzler, et al., “Soil microbial communities responded to biochar application in temperate soils and slowly metabolized 13C-labelled biochar as revealed by 13C PLFA analyses: results from a short-term incubation and pot experiment,” Eur. J. Soil Sci. 65 (1), 40–51 (2014).

    Article  Google Scholar 

  94. Z. Weng, L. Van Zwieten, B. P. Singh, S. Kimber, S. Morris, A. Cowie, and L. M. Macdonald, “Plant-biochar interactions drive the negative priming of soil organic carbon in an annual ryegrass field system,” Soil Biol. Biochem. 90, 111–121. https://doi.org/10.1016/j.soilbio.2015.08.005

  95. T. L. Whitman, A. Enders, and J. Lehmann, “Pyrogenic carbon additions to soil counteract positive priming of soil carbon mineralization by plants,” Soil Biol. Biochem. 73, 33–41 (2014). https://doi.org/10.1016/J.SOILBIO.2014.02.009

    Article  Google Scholar 

  96. D. Woolf, J. Lehmann, S. Joseph, C. Campbell, F. C. Christo, L. T. Angenent, “An open-source biomass pyrolysis reactor,” Biofuels, Bioprod. Biorefin. 11, 945–954 (2017).

    Article  Google Scholar 

  97. D. Wu, M. Senbayram, H. Zang, F. Ugurlar, S. Aydemir, N. Brüggemann, Y. Kuzyakov, R. Bol, and E. Blagodatskaya, “Effect of biochar origin and soil pH on greenhouse gas emissions from sandy and clay soils,” Appl. Soil Ecol. 129, 121–127 (2018). https://doi.org/10.1016/j.apsoil.2018.05.009

    Article  Google Scholar 

  98. C. Zavalloni, G. Alberti, S. Biasiol, G. D. Vedove, F. Fornasier, J. Liu, and A. Peressotti, “Microbial mineralization of biochar and wheat straw mixture in soil: a short-term study,” Appl. Soil Ecol. 50, 45–51 (2011). https://doi.org/10.1016/j.apsoil.2011.07.012

    Article  Google Scholar 

  99. Q. Zhang, J. **ao, J. Xue, and L. Zhang, “Quantifying the effects of biochar application on greenhouse gas emissions from agricultural soils: a global meta-analysis,” Sustainability 12, 3436 (2020). https://doi.org/10.3390/su12083436

    Article  Google Scholar 

  100. A. Zhang, Y. Liu, G. Pan, Q. Hussain, L. Li, J. Zheng, and X. Zhang, “Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain,” Plant Soil 351, 263–275 (2011).

    Article  Google Scholar 

  101. A. R. Zimmerman, B. Gao, and M.-Y. Ahn, “Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils,” Soil Boil. Biochem. 43, 1169–1179 (2011). https://doi.org/10.1016/j.soilbio.2011.02.005

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to M.R. Bayan (Department of Agriculture and Environmental Sciences. Lincoln University in Missouri, USA) for biochar samples produced using his original technologies.

Funding

This study was supported by the Strategic Academic Leadership Program of the Kazan (Volga Region) Federal University (PRIORITET-2030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Smirnova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Klyueva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnova, E.V., Giniyatullin, K.G., Okunev, P.V. et al. Evaluation of Direction and Mechanisms of Biochar Application Effect on Substrate-Induced Soil Respiration in a Long-Term Laboratory Experiment. Eurasian Soil Sc. 56, 1359–1370 (2023). https://doi.org/10.1134/S1064229323601294

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323601294

Keywords:

Navigation