Log in

The CO2 concentration in soils of montane cloud forests of southern Mexico

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

We studied the CO2 concentration in the soil air of Folic Albic Podzols at heights of 2500 and 2400 m a.s.l. within the area of montane cloud forests of southern Mexico. Soil air samples were collected from the depths of 5, 10, 20, 30, 40, and 50 cm every three hours from 9 a.m. to 18 p.m. during one day. The mean CO2 concentrations in the soil air at the heights of 2500 and 2400 m a.s.l. reached 2170 and 6930 ppm, respectively. The spatial and temporal variability of the CO2 concentration in the soil air of the Podzols of the montane cloud forest were revealed. The spatial variability was controlled by the differences in the species composition of the surface vegetation and the depth of the soil organic horizon, whereas the temporal variability was related to the generally low level of aeration of the topsoil layer and, presumably, to the cyclic pattern of the root respiration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. N. Kurganova, V. O. Lopes de Gerenyu, T. N. Myakshina, D. V. Sapronov, and V. N. Kudeyarov, “The CO2 Emission from Soils of Different Ecosystems of the Southern Taiga Zone. Analysis of 12-Year-Long Annual Observation Data,” Dokl. Akad. Nauk 436(6), 843–846 (2011).

    Google Scholar 

  2. A. V. Smagin, The Gas Phase of Soils (Izd. Mosk. Gos. Univ., Moscow, 2005) [in Russian].

    Google Scholar 

  3. G. Alvarez-Arteaga, Evaluacion de los almacenes de carbono en biomasa y suelo en un bosque mesofilo de montana en la Sierra Norte de Oaxaca, Mexico. Mexico: UNAM, 81 (2009).

    Google Scholar 

  4. G. Álvarez-Arteaga, N. E. Garcia-Calderón, P.V. Krasilnikov, S. N. Sedov, V. O. Targulian, and N. Velázquez-Rosas, “Soil Altitudinal Sequence on Base Poor Parent Material in a Montane Cloud Forest in Sierra Juarez, Southern Mexico,” Geoderma 144, 593–612 (2008).

    Article  Google Scholar 

  5. A. Bekele, L. Kellman, and H. Beltrami, “Soil Profile CO2 Concentrations in Forested and Clear Cut Sites in Nova Scotia, Canada,” For. Ecol. Managem. 242, 587–597 (2007).

    Article  Google Scholar 

  6. G. C. Chen, N. F. Y. Tam, and Y. Ye, “Summer Fluxes of Atmospheric Greenhouses Gases N2O, CH4 and CO2 from Mangrove Soil in South China,” Sci. Total Environ. 408(13), N. 2761–2767 (2010).

    Article  Google Scholar 

  7. P. G. Comeau and J. P. Kimmins, “Above-and Below-Ground Biomass and Production of Lodgepole Pine on Sites with Different Soil Moisture Regimes,” Can. J. For. Res. 19, 447–454 (1989).

    Article  Google Scholar 

  8. E. Daly, A. C. Oishi, A. Porporato, and G. G. Katul, “A Stochastic Model for Daily Subsurface CO2 Concentration and Related Soil Respiration,” Adv. Water Res. 31, 987–994 (2008).

    Article  Google Scholar 

  9. Y. Isagi, T. Kawahara, K. Kamo, and H. Ito, “Net Production and Carbon Cycling in a Bamboo Phyllostchus pubescens Stand,” Plant Ecol. 130, 41–52 (1997).

    Article  Google Scholar 

  10. C. Fang and J. Moncrieff, “The Variation of Soil Microbial Respiration with Depth in Relation to Soil Carbon Composition,” Plant Soil 268, 243–253 (2005).

    Article  Google Scholar 

  11. C. R. Flechard, A. Neftel, M. Jocher, C. Ammann, J. Leifeld, and J. Fuhrer, “Temporal Changes in Soil Pore Space CO2 Concentration and Storage Under Permanent Grassland,” Agric. For. Meteorol. 142, 66–84 (2007).

    Article  Google Scholar 

  12. A. Flores and G. I. Manzanero, “Tipos de Vegetacion del Estado de Oaxaca,” Soc. Natural. Oaxaca 3: Vegetacion y Flora, pp. 7–45 (Oaxaca, 1999).

  13. L. Fuyuan, S. Linhua, and T. Tao, “Microbial Production of CO2 in Red Soil in Stone Forest National Park,” J. Geogr. Sci. 13(2), 250–256 (2003).

    Article  Google Scholar 

  14. E. García, Modificaciones al Sistema de Clasificación Climática de Kóppen (UNAM, Mexico, 1973).

    Google Scholar 

  15. M. G. Huck, R. H. Hageman, and J. B. Hanson, “Diurnal Variation in Root Respiration,” Plant Physiol. 37, 371–375 (1969).

    Article  Google Scholar 

  16. R. Jassal, A. Black, M. Novak, K. Morgenstern, Z. Nesic, and D. Gaumont-Guay, “Relationship between Soil CO2 Concentrations and Forest-Floor CO2 Effluxes,” Agric. For. Meteorol. 130, 176–192 (2005).

    Article  Google Scholar 

  17. C. R. McClung, “Circadian Rhythms in Plants,” Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 139–162 (2001).

    Article  Google Scholar 

  18. V. J. Pacific, B. L. McGlynn, D. Riveros-Iregui, D. L. Welsch, H. E. Epstein, “Variability in Soil Respiration across Riparian-Hillslope Transitions,” Biogeochemistry 91(1), 51–70 (2008).

    Article  Google Scholar 

  19. D. A. Riveros-Iregui, R. E. Emanuel, D. J. Muth, B. L. McGlynn, H. E. Epstain, D. L. Welsch, V. J. Pasific, and J. M. Wraith, “Diurnal Hysteresis between Soil CO2 and Soil Temperature as Controlled by Soil Water Content,” Geophys. Res. Lett. 34, 1–5 (2007).

    Article  Google Scholar 

  20. O. Straaten, E. Veldkamp, M. Kohler, and I. Anas, “Drought Effects on Soil CO2 Efflux in a Cacao Agroforestry System in Sulawesi, Indonesia,” Biogeosci. Discuss 6, 11541–11576 (2009).

    Article  Google Scholar 

  21. J. Tang, D. D. Baldocchi, Y. Qi, and L. Xu, “Assessing Soil CO2 Efflux Using Continuous Measurements of CO2 Profiles in Soils with Small Solid-State Sensors,” Agric. For. Meteorol. 118, 207–220 (2003).

    Article  Google Scholar 

  22. T. Veblen, F. Schlegel, and B. Escobar, “Biomasa y Produccion Primaria de Chusquea culeou Desv. y Chusquea tenuiflora Phil. En el Sur de Chili,” Bosque 3(1), 47–56 (1979).

    Google Scholar 

  23. Y. N. Wang, M. K. Wang, Y. Z. Shun, C. T. Ta, Y. C. Kai, “Characterization of Low-Molecular-Weight Organic Acids and Organic Carbon of Taiwan Red Cypress, Peacock Pine and Moso Bamboo in a Temperate Rain Forest,” Commun. Soil Sci. Plant Anal. 1, 77–91 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Ikkonen.

Additional information

Original Russian Text © E.N. Ikkonen, N.E. Garsía-Calderón, G. Álvarez-Arteaga, A. Ibáñez-Huerta, E. Fuentes-Romero, J.M. Hernández-Solís, 2013, published in Pochvovedenie, 2013, No. 2, pp. 172–176.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikkonen, E.N., Garsía-Calderón, N.E., Álvarez-Arteaga, G. et al. The CO2 concentration in soils of montane cloud forests of southern Mexico. Eurasian Soil Sc. 46, 153–157 (2013). https://doi.org/10.1134/S1064229313020063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229313020063

Keywords

Navigation