Log in

Diffraction Theory of Propagation of High-Frequency Radio Waves in a Spherically Layered Ionospheric Radio Channel

  • ON THE 85TH ANNIVERSARY OF DMITRII SERGEEVICH LUKIN
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

A special analytical method is developed to describe the propagation of high-frequency electromagnetic waves emitted by a vertical point dipole from the surface of perfectly conducting Earth in a regular spherically layered background ionosphere. The basic representation of the wave field employs an integral over the set of wave components, each of which is related to a specific ray trajectory. Such an approach makes it possible to analytically take into account the effect of medium-scale 3D inclusions in the background ionosphere as an additional phase shift of the wave component with allowance for the distortion of its ray trajectory and to numerically calculate the effect of wave-field focusing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. G. I. Makarov, V. V. Novikov, and S. T. Rybachek, Distribution of Electromagnetic Waves over the Land Surface (Nauka, Moscow, 1991).

    Google Scholar 

  2. G. I. Makarov, V. V. Novikov, and S. T. Rybachek, Distribution of Radio Waves in a Waveguide Earth-Ionosphere and in an Ionosphere (Nauka, Moscow, 1993).

    Google Scholar 

  3. A. N. Kazantsev, D. S. Lukin, and Yu. G. Spiridonov, Kosmich. Issled. 5, 593 (1967).

    Google Scholar 

  4. Yu. G. Spiridonov and D. S. Lukin, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 12 (12), 1769 (1969).

    Google Scholar 

  5. A. S. Kryukovsky and D. S. Lukin, J. Commun. Technol. Electron. 64, 1224 (2019).

    Article  Google Scholar 

  6. D. S. Lukin, E. A. Palkin, E. B. Ipatov, et al., Izv. Vyssh. Uchebn. Zaved. Fiz. 59 (12/2), 29 (2016).

  7. D. V. Rastyagaev, E. A. Palkin, D. S. Lukin, et al., Vyssh. Uchebn. Zaved. Radiofiz. 64 (8–9), 590 (2021).

    Google Scholar 

  8. D. S. Lukin and E. A. Palkin, Numerical Initial Method in Problems of Diffraction and Distribution of Electromagnetic Waves in Non-Uniform Environments (MFTI, Dolgoprudnyi, 1982).

  9. A. Koval, Y. Chen, A. Stanislavsky, and Q.-H. Zhang, J. Geophys. Res.-Space Phys. 122, 9092 (2017). https://doi.org/10.1002/2017JA024080

    Article  Google Scholar 

  10. A. Koval, Y. Chen, A. Stanislavsky, A. Kashcheyev, and Q.‑H. Zhang, J. Geophys. Res. Space Phys. 123, 8940 (2018).

    Article  Google Scholar 

  11. K. J. W. Lynn, N. Balan, M. V. Klimenko, et al., J. Geophys. Res.-Space Phys. 125 (7), e2019JA027575 (2020). https://doi.org/10.1029/2019JA027575

  12. A. I. Reznichenko, F. V. Koloskov, F. F. Sopin, and Yu. M. Yampol’skii, Radiofiz. & Radioastron. 25 (2), 118 (2020). https://doi.org/10.15407/rpra.25.02.118

  13. C. S. Carrano, J. M. Retterer, K. M. Groves, et al., in 2020 XXXIIIrd General Assembly and Scientific Symp. of the Int.l Union of Radio Science, Rome, Italy, 29 Aug.–5 Sept. 5, 2020, N.Y.: IEEE, Article no. 9232348. https://doi.org/10.23919/URSIGASS49373.2020.9232348

  14. N. N. Zernov, Radiotekh. Elektron. (Moscow) 35, 1580 (1990).

    Google Scholar 

  15. N. N. Zernov, V. E. Gherm, N. Yu. Zaalov, and A. V. Nikitin, Radio Sci. 27 (2), 235 (1992).

    Article  Google Scholar 

  16. N. N. Zernov and B. Lundborg, The Statistical Theory of Wave Propagation and HF Propagation in the Ionosphere with Local Inhomogeneities (Swedish Inst. Space Physics, Uppsala Division, Uppsala, 1993).

  17. N. N. Zernov and B. Lundborg, Radio Sci. 31 (1), 67 (1996).

    Article  Google Scholar 

  18. A. V. Vorontsov, V. E. Gherm, and N. N. Zernov, Probl. Difrak. & Rasprostr. Voln (St. Petersburg), Ed. by G. I. Makarov 25, 108 (1993) [in Russian].

  19. N. N. Zernov, Radiotekh. Elektron. (Moscow) 39, 241 (1994).

    Google Scholar 

  20. V. P. Maslov, Perturbation Theory and Asymptotic Methods (Mosk. Gos. Univ., Moscow, 1965) [in Russian].

    Google Scholar 

  21. Yu. A. Kravtsov, Akust. Zh. 14 (1), 1 (1968).

    Google Scholar 

  22. Yu. I. Orlov, Trudy MEI 119, 82 (1972).

    Google Scholar 

  23. J. M. Arnold, Radio Sci. 17, 1181 (1982).

    Article  Google Scholar 

  24. P. Debye, Math. Ann. 67, 535 (1909).

    Article  MathSciNet  Google Scholar 

  25. G. N. Watson, Proc. Royal Soc. A 95, 83 (1918).

    Google Scholar 

  26. G. N. Watson, Proc. Royal Soc. A 95, 546 (1919).

    Google Scholar 

  27. J. R. Wait, Electromagnetic Waves in Stratified Media (Pergamon, New York, 1962).

    MATH  Google Scholar 

  28. J. R. Wait, Lectures on Waves Propagation Theory (Pergamon, New York, 1981).

    Google Scholar 

  29. V. A. Fok, Problems of Diffraction and Propagation of Electromagnetic Waves (Sovetskoe Radio, Moscow, 1970) [in Russian].

    Google Scholar 

  30. A. S. Kryukovskii, D. S. Lukin, and Yu. I. Bova, J. Commun. Technol. Electron. 65, 1364 (2020).

    Article  Google Scholar 

  31. Yu. I. Bova, A. C. Kryukovskii, B. G. Kutuza, et al., Tr. Voenno-Kosm. Akad. im. A. F. Motsayskogo, No. 680, 77 (2021).

    Google Scholar 

  32. A. S. Kryukovskii, D. S. Lukin, E. V. Mikhaleva, and D. V. Rastyagaev, J. Commun. Technol. Electron. 67, 1364 (2022).

    Article  Google Scholar 

  33. A. S. Kryukovskii, V. I. Kurkin, O. A. Laryunin, D. S. Lukin, A. V. Podlesnyi, D. V. Rastyagaev, and Ya. M. Chernyak, J. Commun. Technol. Electron. 61, 920 (2016).

    Article  Google Scholar 

  34. H. Bateman and A. Erdélyi, Higher Transcendental Functions (R. E. Krieger Pub. Co., Malabar, Fla., 1981; Nauka, Moscow, 1966), Vol. 2.

Download references

ACKNOWLEDGMENTS

We are grateful to D.S. Lukin for permanent attention to the work and fruitful discussions on a wide range of scientific problems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Bisyarin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Chikishev

APPENDIX

APPENDIX

CONSTRUCTION OF RADIAL FUNCTIONS ABOVE THE PERFECTLY CONDUCTIVE EARTH SURFACE

Determination of radial functions Rn(r) for a point source placed on the surface of perfectly conductive Earth surface requires the use of special mathematical methods considered in this Appendix. As was mentioned in Section 1, the problem under consideration is particularly difficult due to the fact that boundary condition (4) is set at \(r = {{R}_{{\text{e}}}}\) (i.e., at the singularity of Eq. (3)). To separate these two problems, we must, first, write and solve Eq. (9) with the field source located at arbitrary point r = b > Re above the Earth surface:

$$~\frac{{{{d}^{2}}{{R}_{n}}}}{{d{{x}^{2}}}} + \left( {1 - \frac{{n\left( {n + 1} \right)}}{{{{x}^{2}}}}} \right){{R}_{n}} = - \frac{1}{{b\xi }}\delta \left( {x - \xi } \right),$$
(A1)

where auxiliary independent variable \(x = kr\sqrt {{{\varepsilon }_{m}}\left( r \right)} \) is introduced, and parameter \(\xi = kb\sqrt {{{\varepsilon }_{m}}\left( b \right)} \) corresponds to the value of this variable at the source point. After finding a solution to equation (A1), one should pass to the limit at \(b \to {{R}_{{\text{e}}}}\).

It is easy to show that homogeneous equation (A1) has the fundamental system of solutions

$$R_{n}^{{\left( 0 \right)}}\left( x \right) = \sqrt x {{Z}_{{n + \frac{1}{2}}}}\left( x \right),$$
(A2)

where Zν(x) are the cylindrical functions of order ν. Assuming time dependence of the wave field in the form \({\text{exp}}\left( { - i\omega t} \right)\), we must choose the Hankel functions of the first kind in the region above the source x > ξ, since they describe the upward propagating waves. Since both upward and downward propagation takes place in the layer between the Earth surface and the source at Re < x < ξ, the system is correctly described using the Bessel functions. Thus, a particular solution to Eq. (A1) is represented as

$$\begin{gathered} R_{n}^{{\left( 1 \right)}}\left( x \right) = \frac{{i\pi }}{{2b\xi }}\left[ {\sqrt x H_{{n + \frac{1}{2}}}^{{\left( 1 \right)}}\left( x \right)\sqrt \xi {{J}_{{n + \frac{1}{2}}}}\left( \xi \right)\Theta \left( {x - \xi } \right)} \right. \\ \left. { + \,\,\sqrt \xi H_{{n + \frac{1}{2}}}^{{\left( 1 \right)}}\left( \xi \right)\sqrt x {{J}_{{n + \frac{1}{2}}}}\left( x \right)\Theta \left( {\xi - x} \right)} \right] \\ \end{gathered} $$
(A3)

using Heaviside function Θ(x).

The boundary condition formulated as

$$R_{n}^{'}\left( x \right) \to 0\,\,\,\,{\text{at}}\,\,\,\,x \to \xi = k{{R}_{{\text{e}}}}$$
(A4)

can be satisfied by adding function (A2) with an appropriate coefficient. It can be easily shown that the expression

$$\begin{gathered} R_{n}^{{{\text{total}}}}\left( x \right) = \frac{{i\pi }}{{2b\xi }} \\ \times \,\,\left[ {\sqrt x H_{{n + \frac{1}{2}}}^{{\left( 1 \right)}}\left( x \right){\kern 1pt} \sqrt \xi {{J}_{{n + \frac{1}{2}}}}{\kern 1pt} \left( \xi \right){\kern 1pt} \Theta {\kern 1pt} \left( {x - \xi } \right) + \sqrt \xi H_{{n + \frac{1}{2}}}^{{\left( 1 \right)}}\left( \xi \right)\sqrt x {{J}_{{n + \frac{1}{2}}}}{\kern 1pt} \left( x \right){\kern 1pt} \Theta \left( {\xi - x} \right) - \sqrt x H_{{n + \frac{1}{2}}}^{{\left( 1 \right)}}{\kern 1pt} \left( x \right){\kern 1pt} \sqrt \xi H_{{n + \frac{1}{2}}}^{{\left( 1 \right)}}{\kern 1pt} \left( \xi \right)\frac{{{{{\left( {\sqrt \xi {{J}_{{n + \frac{1}{2}}}}\left( \xi \right)} \right)}}^{'}}}}{{{{{\left( {\sqrt \xi H_{{n + \frac{1}{2}}}^{{\left( 1 \right)}}\left( \xi \right)} \right)}}^{'}}}}} \right] \\ \end{gathered} $$
(A5)

satisfies both Eq. (A1) and boundary condition (A4). In this work, we study the space above the Earth surface and, hence, select the corresponding part Rn(x). After substituting b = Re and ξ = kRe, this function is written as

$$\begin{gathered} {{R}_{n}}\left( x \right) = \frac{{i\pi }}{{2{{R}_{{\text{e}}}}\xi }}\left[ {\sqrt {x~} H_{{n + \frac{1}{2}}}^{{\left( 1 \right)}}\left( x \right)\sqrt \xi {{J}_{{n + \frac{1}{2}}}}\left( \xi \right) - \sqrt {x~} H_{{n + \frac{1}{2}}}^{{\left( 1 \right)}}\left( x \right)\sqrt \xi \frac{{{{{\left( {\sqrt \xi {{J}_{{n + \frac{1}{2}}}}\left( \xi \right)} \right)}}^{'}}}}{{{{{\left( {\sqrt \xi H_{{n + \frac{1}{2}}}^{{\left( 1 \right)}}\left( \xi \right)} \right)}}^{'}}}}} \right] \\ = \frac{{i\pi }}{{2{{R}_{{\text{e}}}}\xi }}\frac{{\sqrt x H_{{n + \frac{1}{2}}}^{{\left( 1 \right)}}\left( x \right)}}{{{{{\left( {\sqrt \xi H_{{n + \frac{1}{2}}}^{{\left( 1 \right)}}\left( \xi \right)} \right)}}^{'}}}}\mathcal{W}\left[ {\sqrt \xi {{J}_{{n + \frac{1}{2}}}}\left( \xi \right),\sqrt \xi H_{{n + \frac{1}{2}}}^{{\left( 1 \right)}}\left( \xi \right)} \right] = - \frac{1}{{{{R}_{{\text{e}}}}\xi }}\frac{{\sqrt x H_{{n + \frac{1}{2}}}^{{\left( 1 \right)}}\left( x \right)}}{{{{{\left( {\sqrt \xi H_{{n + \frac{1}{2}}}^{{\left( 1 \right)}}\left( \xi \right)} \right)}}^{'}}}}, \\ \end{gathered} $$
(A6)

where the known value of the Wronskian is used:

$$\mathcal{W}\left[ {\sqrt \xi {{J}_{{n + \frac{1}{2}}}}\left( \xi \right),\sqrt \xi H_{{n + \frac{1}{2}}}^{{\left( 1 \right)}}\left( \xi \right)} \right] = \frac{{2i}}{\pi }.$$

The expression for the derivative in the denominator in expression (A6) can be simplified, and the result is

$$\begin{gathered} {{R}_{n}}\left( x \right) = - \frac{2}{{{{R}_{{\text{e}}}}}}\sqrt {\frac{x}{\xi }} \\ \times \,\,\frac{{H_{{n + \frac{1}{2}}}^{{\left( 1 \right)}}\left( x \right)}}{{\xi \left( {H_{{n - \frac{1}{2}}}^{{\left( 1 \right)}}\left( \xi \right) - H_{{n + \frac{3}{2}}}^{{\left( 1 \right)}}\left( \xi \right)} \right) + H_{{n + \frac{1}{2}}}^{{\left( 1 \right)}}\left( \xi \right)}}. \\ \end{gathered} $$
(A7)

Radial coordinate r is substituted in formula (A7), and, in this form, it is used in subsequent analytical transformations. Note that radial function (A7) fully corresponds to the solution of the problem of the field of a point source above a spherical perfectly conductive Earth with surface impedance \(\delta = 0\) [1].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zernov, N.N., Bisyarin, M.A. & Germ, V.E. Diffraction Theory of Propagation of High-Frequency Radio Waves in a Spherically Layered Ionospheric Radio Channel. J. Commun. Technol. Electron. 68, 659–665 (2023). https://doi.org/10.1134/S1064226923060189

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226923060189

Navigation