Log in

Modeling InAs quantum-dot formation on the side surface of GaAs nanowires

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

We have theoretically studied the formation of InAs quantum dots (QDs) on the side surface of GaAs nanowires (NWs). The effective energies of formation of a thin InAs layer and QDs on the NW side surface are compared with allowance for elastic stresses at the radial heteroboundary of two materials with lattice mismatch. The concept of a critical thickness of the external (wetting) layer is introduced, at which the mechanical stresses stimulate three-dimensional growth of QDs. The dependence of the critical layer thickness on the NW diameter and elastic constants of the system is determined. The phenomenon of partial filling of the NW side surface by QDs is explained by a decrease in the thickness of a deposited InAs layer with increasing height. The results of modeling agree well with the available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).

    Article  ADS  Google Scholar 

  2. E. I. Givargizov, in Growth of Filamentary and Plate Crystals from Vapor Phase (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  3. V. G. Dubrovskii, G. E. Cirlin, and V. M. Ustinov, Semiconductors 43, 1539 (2009).

    Article  ADS  Google Scholar 

  4. Y. Li, F. Qian, J. **ang, et al., Mater. Today 9, 18 (2006).

    Article  Google Scholar 

  5. H. J. Joyce, Q. Gao, H. H. Tan, et al., Prog. Quantum Electron. 35, 23 (2011).

    Article  ADS  Google Scholar 

  6. G. E. Cirlin, A. D. Bouravleuv, I. P. Soshnikov, et al., Nanoscale Res. Lett. 5, 360 (2010).

    Article  ADS  Google Scholar 

  7. O. Hayden, R. Agarwal, and W. Lu, Nano Today 3(5–6), 12 (2008).

    Article  Google Scholar 

  8. F. Glas, Phys. Rev. B 74, 121302 (2006).

    Article  ADS  Google Scholar 

  9. V. G. Dubrovskii, N. V. Sibirev, X. Zhang, et al., Cryst. Growth Des. 10, 3949 (2010).

    Article  Google Scholar 

  10. X. Zhang, V. G. Dubrovskii, N. V. Sibirev, et al., Cryst. Growth Des. 11, 5441 (2011).

    Article  Google Scholar 

  11. M. E. Messing, J. Wong-Leung, Z. Zanolli, et al., Nano Lett. 11, 3899 (2011).

    Article  ADS  Google Scholar 

  12. R. Popovitz-Biro and A. Kretinin, Cryst. Growth Des. 11, 3858 (2011).

    Article  Google Scholar 

  13. X. Yan, X. Zhang, X. Ren, et al., Nano Lett. 11, 3941 (2011).

    Article  ADS  Google Scholar 

  14. X. Yan, X. Zhang, X. Ren, et al., Nano Lett. 12, 1851 (2012).

    Article  ADS  Google Scholar 

  15. F. Glas and B. Daudin, Phys. Rev. B 86, 174112 (2012).

    Article  ADS  Google Scholar 

  16. V. A. Shchukin, D. Bimberg, and K. W. Ng, Rev. Mod. Phys. 71, 1125 (1999).

    Article  ADS  Google Scholar 

  17. V. G. Dubrovskii, G. E. Cirlin, and V. M. Ustinov, Phys. Rev. B 68, 075409 (2003).

    Article  ADS  Google Scholar 

  18. K. E. Aifantis, A. L. Kolesnikova, and A. E. Romanov, Philos. Mag. 87, 4731 (2007).

    Article  ADS  Google Scholar 

  19. V. G. Dubrovskii, M. A. Timofeeva, and M. Tchernycheva, Semiconductors 47, 50 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Bolshakov.

Additional information

Original Russian Text © A.D. Bolshakov, V.G. Dubrovskii, **n Yan, **a Zhang, **aomin Ren, 2013, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2013, Vol. 39, No. 23, pp. 39–50.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolshakov, A.D., Dubrovskii, V.G., Yan, X. et al. Modeling InAs quantum-dot formation on the side surface of GaAs nanowires. Tech. Phys. Lett. 39, 1047–1052 (2013). https://doi.org/10.1134/S1063785013120043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785013120043

Keywords

Navigation