Log in

Calculation of Elastic Modulus of Nanostructural Elements by the Method of Matching of Solutions to Boundary Value Elasticity Problems and Molecular Dynamics Problems

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The technique for calculating elastic constant of structural nanolements is developed based on the matching of the nanoelement displacement fields obtained by molecular dynamics method with elasticity calculation. The solution matching is performed by varying the elastic modulus. The dependences of the elastic modulus of nanoparticles on their diameter are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Q.-Q. Ni, Y. Fu, and M. Iwamoto, J. Soc. Mater. Sci., Jpn. 53 (9), 956 (2004).

    CAS  Google Scholar 

  2. R. S. Ruoff and N. M. Pugno, Strength of nanostructures, in Proc. 21st Int. Congress of Theoretical and Applied MechanicsMechanics of the 21st Century,” Warsaw: Springer-Verlag, 2004, p. 303.

  3. J. Diao, K. Gall, and M. L. Dunn, J. Mech. Phys. Solids 52 (9), 1935 (2004). https://doi.org/10.1016/j.jmps.2004.03.009

    Article  CAS  ADS  Google Scholar 

  4. R. Dingreville, J. Qu, and M. Cherkaoui, J. Mech. Phys. Solids 53 (8), 1827 (2004). https://doi.org/10.1016/j.jmps.2005.02.012

    Article  CAS  ADS  Google Scholar 

  5. H. L. Duan, J. Wang, Z. P. Huang, and B. L. Karihaloo, J. Mech. Phys. Solids 53 (7), 1574 (2005). https://doi.org/10.1016/j.jmps.2005.02.009

    Article  MathSciNet  ADS  Google Scholar 

  6. V. A. Lagunov and A. B. Sinani, Phys. Solid State 43 (4), 670 (2001). https://doi.org/10.1134/1.1365991

    Article  CAS  ADS  Google Scholar 

  7. A. B. Vakhrushev, Vestn. IzhGTU, No. 1, 25 (2001).

  8. A. I. Gusev and A. A. Rempel, Nanocrystalline Materials (Cambridge Int. Sci., Cambridge, 2004).

    Google Scholar 

  9. V. G. Zavodinskii, Doctoral Dissertation in Mathematics and Physics (Vladivostok, 1997).

  10. V. F. Petrunin, F. M. Zelenyuk, et al., Features of the atomic structure of ultradisperse systems, Proc. I All-Union Conf.Physicochemistry of Ultradisperse Systems,” Moscow, 1987, p. 60.

  11. M. R. Hoare, Adv. Chem. Phys. 40, 49 (1979). https://doi.org/10.1002/9780470142592.ch2

    Article  CAS  Google Scholar 

  12. D. W. Heermann, Computer Simulations Methods in Theoretical Physics (Springer-Verlag, Berlin, 1986).

    Book  Google Scholar 

  13. V. A. Polukhin, V. F. Ukhov, and M. M. Dzugutov, Computer Modeling of Dynamics and Liquid Metals Structure (Nauka, Moscow, 1981), pp. 47–63 [in Russian].

    Google Scholar 

  14. V. I. Blokh, Theory of Elasticity (Kharkov, 1957) [in Russian].

    Google Scholar 

  15. R. A. Andrievskii, G. V. Kalinnikov, N. Hellgren, et al., Phys. Solid State 42 (9), 1671 (2000). https://doi.org/10.1134/1.1309449

    Article  CAS  ADS  Google Scholar 

  16. J. Gubicza, A. Juhász, P. Tasnádi, P. Arató, and G. Vörös, J. Mater. Sci. 31, 3109 (1996). https://doi.org/10.1007/BF00354655

    Article  CAS  ADS  Google Scholar 

  17. A. J. Kulkarni, Nanotechnology 16 (12), 2749 (2005). https://doi.org/10.1088/0957-4484/16/12/001

    Article  CAS  ADS  Google Scholar 

  18. A. R. Vaz, M. C. Salvadori, and M. Cattani, Young modulus measurement of nanostructured palladium thin films, in Tech. Proc. of the 2003 Nanotechnology Conf. and Trade Show (Nanotech 2003), San Francisco, CA, February 23–27, 2003 (ICNN, 2003), Vol. 3, p. 177. www.nsti.org. ISBN 0-9728422-2-5.

  19. J.-W. Kang and H.-J. Hwang, Atomistic modeling on structures of ultrathin copper nanotubes, in Tech. Proc. of the 2003 Nanotechnology Conf. and Trade Show (Nanotech 2003), San Francisco, CA, February 23–27, 2003 (ICNN, 2003), Vol. 3, p. 195. www.nsti.org. ISBN 0-9728422-2-5.

  20. A. V. Vakhrushev and A. A. Shushkov, Khim. Fiz. Mezoskopiya 7 (3), 277 (2005).

    Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Vakhrushev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vakhrushev, A.V., Shushkov, A.A. Calculation of Elastic Modulus of Nanostructural Elements by the Method of Matching of Solutions to Boundary Value Elasticity Problems and Molecular Dynamics Problems. Tech. Phys. 68, 354–359 (2023). https://doi.org/10.1134/S1063784223700123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784223700123

Navigation