Log in

Symmetry and optical properties of wurtzite nanostructures with the c axis in the layer plane

  • Proceedings of the XIII Feofilov Symposium “Spectroscopy of Crystals Doped by Rare-Earth and Transition-Metal Ions” (Irkutsk, July 9–13, 2007)
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

In wurtzite-based quantum wells and superlattices with the c axis parallel to the layer plane, this plane is parallel either to a symmetry plane of the wurtzite lattice (type I structures, the 〈11\( \bar 2 \)0〉 growth direction) or to a glide plane containing the c axis (type II structures, the 〈10\( \bar 1 \)0〉 growth direction). In both cases, the space symmetry of the structure depends on the parity of the number of monolayers within the slab(s). The point symmetry is C 2v except for the type II structures with odd monolayer number(s). The latter structures have the σ v point symmetry and can have a built-in electric field. Quite different selection rules, depending on the structure symmetry, govern electron optical transitions and exciton radiative recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. Im, H. Kollmer, J. Off, A. Sohmer, F. Scholz, and A. Hangleiter, Phys. Rev. B: Condens. Matter 57, R9435 (1998).

    ADS  Google Scholar 

  2. N. Grandjean, B. Damilano, S. Dalmasso, M. Leroux, M. Laugt, and J. Massies, J. Appl. Phys. 86, 3714 (1999).

    Article  ADS  Google Scholar 

  3. M. Leroux, N. Grandjean, J. Massies, B. Gil, P. Lefebvre, and P. Bigenwald, Phys. Rev. B: Condens. Matter 60, 1496 (1999).

    ADS  Google Scholar 

  4. C. Morhain, T. Bretagnon, P. Lefebvre, X. Tang, P. Valvin, T. Guillet, B. Gil, T. Taliercio, M. Teisseire-Doninelli, B. Vinter, and C. Deparis, Phys. Rev. B: Condens. Matter 72, 241 305 (2005).

    Google Scholar 

  5. M. D. Craven, F. Wu, A. Chakraborty, B. Imer, U. K. Mishra, S. P. DenBaars, and J. S. Speck, Appl. Phys. Lett. 84, 1281 (2004).

    Article  ADS  Google Scholar 

  6. N. Onojima, J. Suda, T. Kimoto, and H. Matsunami, Appl. Phys. Lett. 83, 5208 (2003).

    Article  ADS  Google Scholar 

  7. S. H. Lim and D. Shindo, J. Appl. Phys. 88, 5107 (2000).

    Article  ADS  Google Scholar 

  8. T. Sasaki and S. Zembutsu, J. Appl. Phys. 61, 2533 (1987); M. D. Craven, S. H. Lim, F. Wu, J. S. Speck, and S. P. DenBaars, Appl. Phys. Lett. 81, 469 (2002).

    Article  ADS  Google Scholar 

  9. Y. Jun Sun, O. Brandt, U. Jahn, T. Yu Liu, A. Trampert, S. Croneneberg, S. Dhar, and K. H. Ploog, J. Appl. Phys. 92, 5714 (2002).

    Article  ADS  Google Scholar 

  10. M. McLaurin, T. E. Mates, and J. S. Speck, Appl. Phys. Lett. 86, 262 104 (2005).

    Google Scholar 

  11. C. Q. Chen, M. E. Gaevski, W. H. Sun, E. Kuokstis, J. P. Zhang, R. S. Q. Fareed, H. M. Wang, J. W. Yang, G. Simin, M. A. Khan, H. P. Maruska, D. W. Hill, M. C. Chou, and B. Chai, Appl. Phys. Lett. 91, 3194 (2002).

    Article  ADS  Google Scholar 

  12. International Tables for Crystallography, Ed. by Th. Hahn (Reidel, Dordrecht, Holland, 2002), Vol. E.

    Google Scholar 

  13. V. P. Smirnov, R. A. Évarestov, and A. V. Leko, Fiz. Tverd. Tela (Leningrad) 27(10), 2909 (1985) [Sov. Phys. Solid State 27 (10), 1750 (1985)].

    Google Scholar 

  14. E. A. Wood, Bell Syst. Tech. J. 43, 541 (1064).

    Google Scholar 

  15. S. C. Miller and W. F. Love, Tables of Irreducible Representations of Space Groups and Corepresentations of Magnetic Space Groups (Pruett, Boulder, CO, 1967).

    Google Scholar 

  16. P. Tronc, Yu. E. Kitaev, G. Wang, M. F. Limonov, A. G. Panfilov, and G. Neu, Phys. Status Solidi B 216, 599 (1999); Yu. E. Kitaev and P. Tronc, Phys. Rev. B: Condens. Matter 64, 205 312 (2001).

    Article  ADS  Google Scholar 

  17. J. M. Chauveau, C. Morhain, B. Lo, B. Vinter, P. Vennegues, M. Laught, M. Tesseire-Doninelli, and G. Neu, Appl. Phys. A: Mater. Sci. Process. 88, 65 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Tronc.

Additional information

The major part of the proceedings of the XIII Feofilov Symposium was published in Fizika Tverdogo Tela (Physics of the Solid State), 2008, Vol. 50, No. 9.

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tronc, P., Vennéguès, P. Symmetry and optical properties of wurtzite nanostructures with the c axis in the layer plane. Phys. Solid State 50, 1803–1807 (2008). https://doi.org/10.1134/S1063783408100028

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783408100028

PACS numbers

Navigation