Log in

Features of conductivity mechanisms in heavily doped compensated V1–x Ti x FeSb Semiconductor

  • Electronic Properties of Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The crystal and electronic structure and also the energy and kinetic properties of n-VFeSb semiconductor heavily doped with the Ti acceptor impurity are investigated in the temperature and Ti concentration ranges of T = 4.2–400 K and N Ti A ≈ 9.5 × 1019–3.6 × 1021 cm–3 (x = 0.005–0.20), respectively. The complex mechanism of the generation of acceptor and donor structural defects is established. It is demonstrated that the presence of vacancies at Sb atomic sites in n-VFeSb gives rise to donor structural defects (“a priori do**”). Substitution of the Ti dopant for V in VFeSb leads simultaneously to the generation of acceptortype structural defects, a decrease in the number of donor defects, and their removal in the concentration range of 0 ≤ x ≤ 0.03 via the occupation of vacancies by Sb atoms, and the generation of donor defects due to the occurrence of vacancies and an increase in their number. The result obtained underlies the technique for fabricating new n-VFeSb-based thermoelectric materials. The results are discussed in the context of the Shklovsky–Efros model for a heavily doped compensated semiconductor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Romaka, L. Romaka, Yu. Stadnyk, V. Gvozdetskii, R. Gladyshevskii, N. Skryabina, N. Melnychenko, V. Hlukhyy, and T. Fessler, Eur. J. Inorg. Chem., 2588 (2012).

  2. D. P. Young, P. Khalifah, R. J. Cava, and A. P. Ramirez, J. Appl. Phys. 87, 317 (2000).

    Article  ADS  Google Scholar 

  3. Yu. Stadnyk, A. Horyn, V. Sechovsky, L. Romaka, Ya. Mudryk, J. Tobola, T. Stopa, S. Kaprzyk, and A. Kolomiets, J. Alloys Comp. 402, 30 (2005).

    Article  Google Scholar 

  4. Yu. Stadnyk, L. Romaka, Yu. Gorelenko, A. Tkachuk, and J. Pierre, in Proceedings of the International Conference on Thermoelectrics, June 8–11, 2001, Bei**g, China, p. 251.

    Google Scholar 

  5. K. Kaczmarska, J. Pierre, J. Beille, J. Tobola, R. V. Skolozdra, and G. A. Melnik, J. Magn. Magn. Mater. 187, 210 (1998).

    Article  ADS  Google Scholar 

  6. R. Ferro and A. Saccone, Intermetallic Chemistry (Amsterdam, Elsevier, 2008).

    Google Scholar 

  7. Minmin Zou, **g-Feng Li, and Takuji Kita, J. Solid State Chem. 198, 125 (2013).

    Article  ADS  Google Scholar 

  8. Chenguang Fu, Hanhui **e, Yintu Liu, T. J. Zhu, Jian **e, and X. B. Zhao, Intermetallics 32, 39 (2013).

    Article  Google Scholar 

  9. T. Roisnel and J. Rodriguez-Carvajal, in Proceedings of the 7th European Powder Diffraction Conference EPDIC-7, Barcelona, Spain, May 20–23, 2000, Mater. Sci. Forum, 378 (2001).

  10. M. Schroter, H. Ebert, H. Akai, P. Entel, E. Hoffmann, and G. G. Reddy, Phys. Rev. B 52, 188 (1995).

    Article  ADS  Google Scholar 

  11. V. L. Moruzzi, J. F. Janak, and A. R. Williams, Calculated Electronic Properties of Metals (Pergamon, New York, 1978).

    Google Scholar 

  12. V. A. Romaka, V. V. Romaka, and Yu. V. Stadnyk, Intermetallic Semiconductors: Properties and Applications (L’vovsk. Politekhnika, L’vov, 2011) [in Russian].

    Google Scholar 

  13. N. F. Mott, Metal-Insulator Transitions (Taylor and Francis, London, Bristol, 1990).

    Google Scholar 

  14. B. I. Shklovskii and A. L. Efros, Sov. Phys. JETP 34, 435 (1971).

    ADS  Google Scholar 

  15. B. I. Shklovskii and A. L. Efros, Sov. Phys. JETP 35, 610 (1972).

    ADS  Google Scholar 

  16. D. Fruchart, V. A. Romaka, Yu. V. Stadnyk, L. P. Romaka, Yu. K. Gorelenko, M. G. Shelyapina, and V. F. Chekurin, J. Alloys Compd. 438, 8 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Romaka.

Additional information

Original Russian Text © V.A. Romaka, P. Rogl, V.V. Romaka, D. Kaczorowski, Yu.V. Stadnyk, V.Ya. Krayovskyy, A.M. Horyn, 2016, published in Fizika i Tekhnika Poluprovodnikov, 2016, Vol. 50, No. 7, pp. 877–885.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romaka, V.A., Rogl, P., Romaka, V.V. et al. Features of conductivity mechanisms in heavily doped compensated V1–x Ti x FeSb Semiconductor. Semiconductors 50, 860–868 (2016). https://doi.org/10.1134/S1063782616070204

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782616070204

Navigation