Log in

Applicability of Phase-Equivalent Energy-Dependent Potential. Case Studies

  • Elementary Particles and Fields/Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Energy–momentum dependent phase-equivalent local potential to the Graz separable one is constructed following the method of Arnold and MacKellar. The scattering phase shifts for the nonlocal potential are computed via the Fredhlom determinant and for equivalent local potential the same are calculated through the phase function method for nucleon–nucleon and alpha–nucleon systems. We achieve excellent agreement with the standard data up to partial wave \(\ell=2\). However, it is observed that this method of constructing equivalent local potentials works satisfactorily for few lower partial waves. It is also examined that beyond \(\ell=2\) our local potential is unable to reproduce the proper phase parameters. This may be caused due to the high momentum components (\(l>2\)) of the nonlocal wave function that are not equivalent to those generated by the energy–momentum dependent local potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

REFERENCES

  1. M. Coz, L. D. Arnold, and A. D. MacKellar, Ann. Phys. (N.Y.) 59, 219 (1971).

    Article  ADS  Google Scholar 

  2. L. G. Arnold and A. D. MacKellar, Phys. Rev. C 3, 1095 (1971).

    Article  ADS  Google Scholar 

  3. J. P. McTavish, J. Phys. G: Nucl. Phys. 8, 1037 (1982).

    Article  ADS  Google Scholar 

  4. B. Talukdar, G. C. Sett, and S. R. Bhattaru, J. Phys. G: Nucl. Phys. 11, 591 (1985).

    Article  ADS  Google Scholar 

  5. U. Laha, S. K. Das, and J. Bhoi, Turk. J. Phys. 41, 447 (2017).

    Article  Google Scholar 

  6. U. Laha, B. J. Roy, and B. Talukdar, J. Phys. A: Math. Gen. 22, 3597 (1989).

    Article  ADS  Google Scholar 

  7. U. Laha and J. Bhoi, Phys. Rev. C 88, 064001 (2013).

    Article  ADS  Google Scholar 

  8. U. Laha, S. Ray, S. Panda, and J. Bhoi, Theor. Math. Phys. 193, 1498 (2017).

    Article  Google Scholar 

  9. U. Laha and J. Bhoi, Few-body Syst. 54, 1973 (2013).

    Article  ADS  Google Scholar 

  10. B. Talukdar, U. Laha, and T. Sasakawa, J. Math. Phys. 27, 2080 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  11. G. C. Sett, U. Laha, and B. Talukdar, J. Phys. A: Math. Gen. 21, 3643 (1988).

    Article  ADS  Google Scholar 

  12. U. Laha and J. Bhoi, J. Math. Phys. 54, 013514 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  13. F. Calogero, Variable Phase Approach to Potential Scattering (Academic, NewYork, 1967).

    MATH  Google Scholar 

  14. R. A. Arndt, L. D. Roper, R. A. Bryan, R. B. Clark, B. J. VerWest, and P. Signell, Phys. Rev. D 28, 97 (1983).

    Article  ADS  Google Scholar 

  15. F. Gross and A. Stadler, Phys. Rev. C 78, 014005 (2008).

    Article  ADS  Google Scholar 

  16. G. R. Satchler, L. W. Owen, A. J. Elwin, G. L. Morgan, and R. L. Walter, Nucl. Phys. A 112, 1 (1968).

    Article  ADS  Google Scholar 

  17. J. Bhoi, M. Majumder, and U. Laha, Ind. J. Pure App. Phys. 56, 538 (2018).

    Google Scholar 

  18. H. van Haeringen, Nucl. Phys. A 253, 355 (1975).

    Article  ADS  Google Scholar 

  19. U. Laha, A. K. Behera, M. Majumder, and J. Bhoi, Pramana–J. Phys. 94, 144 (2020).

    Google Scholar 

  20. J. Haidenbauer and W. Plessas, Phys. Rev. C 30, 1822 (1984).

    Article  ADS  Google Scholar 

  21. U. Laha, J. Kor. Phys. Soc. 75, 935 (2019).

    Google Scholar 

  22. A. K. Behera, U. Laha, M. Majumder, and J. Bhoi, Res. Rev. J. Phys. 8, 1 (2019).

    Google Scholar 

  23. A. K. Behera, U. Laha, and J. Bhoi, Turk. J. Phys. 44, 229 (2020).

    Article  Google Scholar 

  24. A. K. Behera, U. Laha, and J. Bhoi, Malays. J. Sci. 39, 63 (2020).

    Article  Google Scholar 

  25. A. K. Behera, B. Khirali, U. Laha, and J. Bhoi, Theor. Math. Phys. 205, 1353 (2020).

    Article  Google Scholar 

  26. A. K. Behera and U. Laha, Pramana–J. Phys. (2021) (in press). https://doi.org/10.1007/s12043-021-02141-w

  27. R. G. Newton, Scattering Theory of Waves and particles, 2nd ed. (Springer-Verlag, New York, 1982).

    Book  Google Scholar 

  28. A. Erdeyli, Higher Transcendental Functions (McGraw-Hill, New York, 1953), Vol. 1.

    Google Scholar 

  29. L. J. Slater, Generalized Hypergeometric Functions (Cambridge Univ. Press, London, 1966).

    MATH  Google Scholar 

  30. W. Magnus and F. Oberhettinger, Formulas and Theorems for the Special Functions of Mathematical Physics (Chelsea, New York, 1949).

    MATH  Google Scholar 

  31. A. W. Babister, Transcendental Functions Satisfying Non-Homogeneous Linear Differential Equations (MacMillan, New York, 1967).

    MATH  Google Scholar 

  32. H. Buchholz, The Confluent Hypergeometric Function (Springer, New York, 1969).

    Book  Google Scholar 

  33. L. J. Slater, Confluent Hypergeometric Functions (Cambridge Univ. Press, New York, 1960).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. K. Behera, U. Laha, M. Majumder or J. Bhoi.

Appendices

Appendix A

SOLUTIONS OF THE NONLOCAL EQUATION

The inhomogeneous Schrödinger wave equation with a symmetric nonlocal potential \(V_{\ell}(r,s)\) for all partial waves can be written as

$$\left({\frac{d^{2}}{dr^{2}}+k^{2}+\frac{\ell\left({\ell+1)}\right)}{r^{2}}}\right)f_{\ell}(k,r)$$
(A.1)
$${}=\int\limits_{0}^{\infty}{V_{\ell}(r,s)f_{\ell}(k,s)ds},$$

where \(V_{\ell}(r,s)\) is the rank-1 Graz separable potential and is expressed as

$$V_{\ell}(r,s)=\lambda_{\ell}g_{\ell}(r)g_{\ell}(s)$$
(A.2)

with the form factor of the potential

$$g_{\ell}(r)=2^{-\ell}\left({\ell!}\right)^{-1}r^{\ell}e^{-\beta_{\ell}r}.$$
(A.3)

The irregular solution \(f_{\ell+}(k,r)\) to Eq. (A.1) can be written in the terms of free particle irregular solution \(f_{\ell 0}(k,r)\) and irregular Green’s function \(G_{\ell}^{(I)}(r,s)\) as

$$f_{\ell+}(k,r)=f_{\ell 0}(k,r)+\lambda_{\ell}d_{\ell}(k)I_{\ell}(r,\beta_{\ell}),$$
(A.4)

where

$$I_{\ell}(r,\beta_{\ell})=\int\limits_{r}^{\infty}{g_{\ell}(s)G_{\ell}^{(I)}(r,s)ds}.$$
(A.5)

The quantities \(f_{\ell 0}(k,r)\), \(d_{\ell}(k)\) and the irregular Green’s function \(G_{\ell}^{(I)}(r,s)\) [27] are expressed as

$$f_{\ell 0}(k,r)=-i\left({2kr}\right)^{\ell+1}e^{i\left({kr-\frac{\ell\pi}{2}}\right)}$$
(A.6)
$${}\times\Psi(\ell+1,2\ell+2;-2ikr),$$
$$d_{\ell}(k)=\int\limits_{0}^{\infty}{g_{\ell}(s)f_{\ell+}(k,s)ds}$$
(A.7)

and

$$G_{\ell}^{(I)}(r,s)=\begin{cases}G_{\ell}^{(I)}(r,s),\quad s>r\\ 0,\quad s<r.\end{cases}$$
(A.8)

Multiplying Eq. (A.4) by \(g_{\ell}(r)\) and integrating over whole space one obtains

$$d_{\ell}(k)=\int\limits_{0}^{\infty}{g_{\ell}(r)f_{\ell 0}(k,r)dr/D_{\ell}(k)},$$
(A.9)

where the Fredholm determinant \(D_{\ell}(k)\) associated with irregular boundary condition reads as

$$D_{\ell}(k)=1$$
(A.10)
$${}-\lambda_{\ell}\int\limits_{0}^{\infty}{\int\limits_{r}^{\infty}{g_{\ell}(r)g_{\ell}(s)G_{\ell}^{(I)}(r,s)dsdr}}.$$

To have an expression for \(f_{\ell+}(k,r)\) one needs to solve the integrals involved in Eqs. (A.5), (A.9), and (A.10). To solve the indefinite integral in Eq. (A.5) we proceed as follows. For all partial waves \(G_{\ell}^{(I)}(r,s)\) can be expressed in terms of confluent hypergeometric functions [7, 12] as

$$G_{\ell}^{(I)}(r,s)=i\left({2k}\right)^{2\ell+1}\frac{\Gamma(\ell+1)}{\Gamma(2\ell+2)}$$
(A.11)
$${}\times e^{-i\ell\pi}r^{\ell+1}s^{\ell+1}e^{ikr}e^{iks}$$
$${}\times\Big{\{}\!{\Phi(\ell+1,2\ell+2;-2ikr)\Psi(\ell+1,2\ell+2;-2iks)}$$
$${}-{\Phi(\ell+1,2\ell+2;-2iks)\Psi(\ell+1,2\ell+2;-2ikr)}\!\Big{\}}.$$

Substituting Eq. (A.11) in Eq. (A.5) together with Eq. (A.3) we have

$$I_{\ell}(r,\beta_{\ell})=i(2k)^{2l+1}r^{l+1}e^{ikr}\frac{\Gamma(\ell+1)}{\Gamma(2\ell+2)}$$
(A.12)
$${}\times e^{-i\ell\pi}2^{-\ell}\left({\ell!}\right)^{-1}\Biggl{[}\int\limits_{0}^{\infty}{s^{2\ell+1}e{}^{-\left({\beta_{\ell}-ik}\right)s}}$$
$${}\times\Big{\{}\Phi(\ell+1,2\ell+2;-2ikr)$$
$${}\times\Psi(\ell+1,2\ell+2;-2iks)$$
$${}-\Phi(\ell+1,2\ell+2;-2iks)$$
$${}\times\Psi(\ell+1,2\ell+2;-2ikr)\Big{\}}ds$$
$${}-\int\limits_{0}^{r}s^{2\ell+1}e{}^{-\left({\beta_{\ell}-ik}\right)s}\Big{\{}\Phi(\ell+1,2\ell+2;-2ikr)$$
$${}\times\Psi(\ell+1,2\ell+2;-2iks)$$
$${}-\Phi(\ell+1,2\ell+2;-2iks)$$
$${}\times\Psi(\ell+1,2\ell+2;-2ikr)\Big{\}}ds\Biggl{]}.$$

With the following standard integrals and relation [28–33]

$$\int\limits_{0}^{\infty}{e^{-\lambda z}}z^{\upsilon}\Phi(a,c;pz)dz$$
(A.13)
$${}=\frac{\Gamma(\upsilon+1)}{\lambda^{\upsilon+1}}{}_{2}F_{1}\left({a,\upsilon+1;c;\frac{p}{\lambda}}\right),$$
$$\int\limits_{0}^{\infty}{e^{-ax}}x^{s-1}\Psi(b,d;\mu x)dx$$
(A.14)
$${}=\frac{\Gamma(1+s-d)\Gamma(s)}{a^{s}\Gamma(1+b+s-d)}$$
$${}\times{}_{2}F_{1}\left({b,s;1+b+s-d;1-\frac{\mu}{a}}\right)$$
$$(\mathrm{Re}\ s>0,\;1+\mathrm{Re}\ s>\mathrm{Re}\ d),$$
$$\theta_{\sigma}(a,c;z)=\frac{1}{c-1}\Biggl{[}\Phi(a,c;z)$$
(A.15)
$${}\times\int{e^{-z^{\prime}}}(z^{\prime})^{\sigma+c-2}\bar{\Phi}(a,c;z^{\prime})dz^{\prime}$$
$${}-\bar{\Phi}(a,c;z)\int{e^{-z^{\prime}}}(z^{\prime})^{\sigma+c-2}\Phi(a,c;z^{\prime})dz^{\prime}\Biggl{]},$$
$${}_{2}F_{1}(a,b;b;z)=(1-z)^{-a}$$
(A.16)

and

$$\Psi(a,b;z)=\frac{\Gamma(1-b)}{\Gamma(a-b+1)}\Phi(a,b;z)$$
(A.17)
$${}+\frac{\Gamma(b-1)}{\Gamma(a)}\bar{\Phi}(a,b;z).$$

Equation (A.12) yields

$$I_{\ell}(r,\beta_{\ell})=i\left({2k}\right)^{2\ell+1}r^{l+1}e^{ikr}e^{-i\ell\pi}2^{-\ell}\left({\ell!}\right)^{-1}$$
(A.18)
$${}\times\Biggl{[}\frac{1}{\left({\beta_{\ell}-ik}\right)^{2\ell+2}(\ell+1)}$$
$${}\times{}_{2}F_{1}\left({\ell+1,2\ell+2;\ell+2;\frac{\beta_{\ell}+ik}{\beta_{\ell}-ik}}\right)$$
$${}\times\Phi(\ell+1,2\ell+2;-2ikr)$$
$${}-\frac{\Gamma(\ell+1)}{\left({\beta_{\ell}-ik}\right)^{2\ell+2}}\left({\frac{\beta_{\ell}+ik}{\beta_{\ell}-ik}}\right)^{-\ell-1}$$
$${}\times\Psi(\ell+1;2\ell+2;-2ikr)$$
$${}-\left({\frac{1}{2ik}}\right)^{2\ell+2}\sum\limits_{n=0}^{\infty}{\left({\frac{\beta_{\ell}+ik}{2ik}}\right)}^{n}\left({\frac{1}{n!}}\right)$$
$${}\times\theta_{n+1}(\ell+1,2\ell+2;-2ikr)\Biggl{]}.$$

Equation (A.18) represents the single transform of the irregular Green’s function with the form factor of the separable potential. To calculate the Fredholm determinant \(D_{\ell}(k)\) we substitute Eq. (A.18) in Eq. (A.10), use the standard integrals in Eqs. (A.13) and (A.14) along with [28–31]

$$\int\limits_{0}^{\infty}{e^{-bz}z^{c-1}\theta_{\sigma}(a,c;pz)}dz$$
(A.19)
$${}=\frac{\Gamma(\sigma+c-1)p^{\sigma}}{\sigma b^{\sigma+c}}{}_{2}F_{1}\left({1,\sigma+a;\sigma+1;\frac{p}{b}}\right),$$
$${}_{2}F_{1}(a,b;c;z)=\frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}$$
(A.20)
$${}\times{}_{2}F_{1}(a,b;a+b-c+1;1-z)$$
$${}+\left({1-z}\right)^{c-a-b}\frac{\Gamma(c)\Gamma(a+b-c)}{\Gamma(a)\Gamma(b)}$$
$${}\times{}_{2}F_{1}(c-a,c-b;c-a-b+1;1-z),$$
$${}_{2}F_{1}(a,b;c;z)=\frac{\Gamma(c)}{\Gamma(a)\Gamma(b)}$$
(A.21)
$${}\times\sum\limits_{n=0}^{\infty}{\frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)}}\frac{z^{n}}{n!}$$

and

$${}_{2}F_{1}(a,b;c;z)$$
(A.22)
$${}=\left({1-z}\right)^{-a}{}_{2}F_{1}\left({a,c-b;c;\frac{z}{z-1}}\right)$$

to get

$$D_{\ell}(k)=1-\left({-1}\right)^{\ell+1}\lambda_{\ell}2^{-2\ell}e^{-i\ell\pi}\left({\ell!}\right)^{-2}$$
(A.23)
$${}\times\Biggl{[}\frac{1}{\left({\beta_{\ell}-ik}\right)^{2\ell+3}}\sum\limits_{n=0}^{\infty}{\frac{\left({-1}\right)^{n}}{n!}\left({\frac{\beta_{\ell}+ik}{\beta_{\ell}-ik}}\right)}^{n}$$
$${}\times\frac{\Gamma(n+2\ell+2)}{\left({\ell+1}\right)}{}_{2}F_{1}\!\!\left({1,n+\ell+2;\ell+2;\frac{\beta_{\ell}+ik}{\beta_{\ell}-ik}}\right)$$
$${}+\frac{\Gamma(2\ell+2)}{\left({\ell+1}\right)\left({\beta_{\ell}^{2}+k^{2}}\right)^{\ell+1}}$$
$${}\times\left({\frac{-1}{\beta_{\ell}-ik}}\right){}_{2}F_{1}\left({1,-\ell;\ell+2;\frac{\beta_{\ell}+ik}{\beta_{\ell}-ik}}\right)\Biggl{]}.$$

To have a compact expression by removing the infinite sum in the above equation we further use the integral representation of the Gaussian hypergeometric function and transformation relation [28-30]

$${}_{2}F_{1}(a,b;c;z)=\frac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)}$$
(A.24)
$${}\times\int\limits_{0}^{1}{dtt^{b-1}\left({1-t}\right)^{c-b-1}\left({1-tz}\right)^{-a}}$$

and

$${}_{2}F_{1}(a,b;c;z)$$
(A.25)
$${}=\left({1-z}\right)^{c-a-b}{}_{2}F_{1}(c-a,c-b;c;z)$$

to have

$$D_{\ell}(k)=1-\frac{\lambda_{\ell}2^{-2\ell}\left({\ell!}\right)^{-2}\Gamma(2\ell+2)}{(\ell+1)\left({\beta_{\ell}-ik}\right)}$$
(A.26)
$${}\times\Biggl{[}\left({\beta_{\ell}^{2}+k^{2}}\right)^{-\ell-1}{}_{2}F_{1}\left({1,-\ell;\ell+2;\frac{\beta_{\ell}+ik}{\beta_{\ell}-ik}}\right)$$
$${}-\frac{\left({2\beta_{\ell}}\right)^{-2\ell-1}}{\left({\beta_{\ell}-ik}\right)}{}_{2}F_{1}\left({1,-\ell;\ell+2;\left({\frac{\beta_{\ell}+ik}{\beta_{\ell}-ik}}\right)^{2}}\right)\Biggl{]}.$$

The above equation gives the desired expression for the Fredholm determinant associated with the irregular boundary condition.

Equation (A.9) in conjunction with Eqs. (A.6), (A.14), (A.25), and (A.26) yields

$$d_{\ell}(k)=\frac{-ie^{-i\frac{\ell\pi}{2}}2^{-\ell}\left({\ell!}\right)^{-1}\left({2k}\right)^{\ell+1}}{D_{\ell}(k)\left({\beta_{\ell}-ik}\right)^{2\ell+2}}$$
(A.27)
$${}\times\frac{\Gamma(2\ell+2)}{\Gamma(\ell+2)}\left({\frac{\beta_{\ell}-ik}{-2ik}}\right)^{2\ell+1}$$
$${}\times{}_{2}F_{1}\left({1,-\ell;\ell+2;\frac{\beta_{\ell}+ik}{\beta_{\ell}-ik}}\right).$$

Finally, Eq. (A.4) together with Eqs. (A.6), (A.18), (A.26), and (A.27) reproduce the irregular solution for motion in Graz separable potential that reads as

$$f_{\ell+}(k,r)=-i\left({2kr}\right)^{\ell+1}e^{i\left({kr-\frac{\ell\pi}{2}}\right)}$$
(A.28)
$${}\times\Psi(\ell+1,2\ell+2;-2ikr)$$
$${}-\frac{\lambda_{\ell}\Gamma(2\ell+2)r^{\ell+1}e^{i\left({kr+\frac{\pi}{2}}\right)}e^{-i\frac{\ell\pi}{2}}}{D_{\ell}(k)\Gamma(\ell+2)\left({\beta_{\ell}-ik}\right)2^{\ell-1}\left({\ell!}\right)^{2}}$$
$${}\times{}_{2}F_{1}(1,-\ell;\ell+2;\frac{\beta_{\ell}+ik}{\beta_{\ell}-ik})$$
$${}\times\Biggl{[}\frac{k^{\ell+1}\Gamma(\ell+1)}{\left({\beta_{\ell}^{2}+k^{2}}\right)^{\ell+1}}\Psi(\ell+1;2\ell+2;-2ikr)$$
$${}-\frac{e^{-i\ell\pi}}{2^{2\ell+2}k^{\ell+1}}\Biggl{\{}\frac{2ik}{\left({\ell+1}\right)\left({\beta_{\ell}-ik}\right)}$$
$${}\times{}_{2}F_{1}\left(1,-\ell;\ell+2;\frac{\beta_{\ell}+ik}{\beta_{\ell}-ik}\right)$$
$${}\times\Phi(\ell+1;2\ell+2;-2ikr)$$
$${}+\sum\limits_{n=0}^{\infty}\left({\frac{\beta_{\ell}+ik}{2ik}}\right)^{n}\frac{1}{\left({n!}\right)}$$
$${}\times\Theta_{n+1}(\ell+1,2\ell+2;-2ikr)\Biggl{\}}\Biggl{]}.$$

Utilizing Eq. (A.28) along with the following formulae [31-33]

$$\frac{d^{n}}{dz^{n}}\Phi(a,c;z)=\frac{(a)_{n}}{(c)_{n}}\Phi(a+n,c+n;z),$$
(A.29)
$$\frac{d^{n}}{dz^{n}}\Psi(a,c;z)=\left({-1}\right)^{n}(a)_{n}$$
(A.30)
$${}\times\Psi(a+n,c+n;z)$$

and

$$\frac{d}{dz}\Theta_{\sigma}(a,c;z)=\left({\sigma-1}\right)$$
(A.31)
$${}\times\Theta_{\sigma-1}(a+1,c+1;z).$$

Equation (2) results

$$J_{\ell}(k,r)=k^{-1}\textrm{Im}\biggl{[}\left({2k}\right)^{2\ell+2}r^{2\ell+1}$$
(A.32)
$${}\times\left({ikr+\ell+1}\right)A_{1}+2ik\left({\ell+1}\right)\left({2kr}\right)^{2\ell+2}A$$
$${}+\frac{\lambda_{\ell}\Gamma(2\ell+2)\left({2k}\right)^{\ell+1}r^{2\ell+1}}{\Gamma(\ell+2)\left({\ell!}\right)^{2}2^{\ell-1}}\left({ikr+\ell+1}\right)$$
$${}\times\left\{{\frac{MX^{\ast}}{D_{\ell}(k)\left({\beta_{\ell}-ik}\right)}+\frac{M^{\ast}X}{D_{\ell}^{\ast}(k)\left({\beta_{\ell}+ik}\right)}}\right\}$$
$${}+\frac{\lambda_{\ell}\Gamma(2\ell+2)\left({2k}\right)^{\ell+1}r^{2\ell+2}}{\Gamma(\ell+2)\left({\ell!}\right)^{2}2^{\ell-1}}$$
$${}\times\left\{{\frac{M_{1}X^{\ast}}{D_{\ell}(k)\left({\beta_{\ell}-ik}\right)}+\frac{2ik\left({\ell+1}\right)M^{\ast}Y}{D_{\ell}^{\ast}(k)\left({\beta_{\ell}+ik}\right)}}\right\}$$
$${}+Pr^{2\ell+1}\left\{{\left({\ell+1+ikr}\right)MM^{\ast}+rM^{\ast}M_{1}}\right\}\biggl{]},$$

where

$$A=\Psi(\ell+1;2\ell+2;2ikr)$$
(A.33)
$${}\times\Psi(\ell+2;2\ell+3;-2ikr),$$
$$A_{1}=\Psi(\ell+1;2\ell+2;-2ikr)$$
(A.34)
$${}\times\Psi(\ell+1;2\ell+2;2ikr),$$
$$X=\Psi(\ell+1;2\ell+2;-2ikr)$$
(A.35)
$${}\times{}_{2}F_{1}\left({1,-\ell;\ell+2;\frac{\beta_{\ell}-ik}{\beta_{\ell}+ik}}\right),$$
$$Y=\Psi(\ell+2;2\ell+3;-2ikr)$$
(A.36)
$${}\times{}_{2}F_{1}\left({1,-\ell;\ell+2;\frac{\beta_{\ell}-ik}{\beta_{\ell}+ik}}\right),$$
$$M=\frac{\Gamma(\ell+1)k^{\ell+1}}{\left({\beta_{\ell}^{2}+k^{2}}\right)^{\ell+1}}$$
(A.37)
$${}\times\Psi(\ell+1;2\ell+2;-2ikr)-\frac{e^{-i\ell\pi}}{2^{2\ell+2}k^{\ell+1}}$$
$${}\times\Biggl{\{}\frac{2ik}{\left({\ell+1}\right)\left({\beta_{\ell}-ik}\right)}$$
$${}\times{}_{2}F_{1}\left(1,-\ell;\ell+2;\frac{\beta_{\ell}+ik}{\beta_{\ell}-ik}\right)$$
$${}\times\Phi(\ell+1;2\ell+2;-2ikr)$$
$${}+\sum\limits_{n=0}^{\infty}\left({\frac{\beta_{\ell}+ik}{2ik}}\right)^{n}\frac{1}{\left({n!}\right)}$$
$${}\times\theta_{n+1}(\ell+1,2\ell+2;-2ikr)\Biggl{\}},$$
$$M_{1}=\left({-2ik}\right)\Biggl{[}-\frac{\Gamma(\ell+2)k^{\ell+1}}{\left({\beta_{\ell}^{2}+k^{2}}\right)^{\ell+1}}$$
(A.38)
$${}\times\Psi(\ell+2;2\ell+3;-2ikr)-\frac{e^{-i\ell\pi}}{2^{2\ell+2}k^{\ell+1}}$$
$${}\times\Biggl{\{}\frac{2ik}{\left({2\ell+2}\right)\left({\beta_{\ell}-ik}\right)}$$
$${}\times{}_{2}F_{1}\left(1,-\ell;\ell+2;\frac{\beta_{\ell}+ik}{\beta_{\ell}-ik}\right)$$
$${}\times\Phi(\ell+2;2\ell+3;-2ikr)$$
$${}+\sum\limits_{n=0}^{\infty}\left({\frac{\beta_{\ell}+ik}{2ik}}\right)^{n}\frac{1}{\left({n!}\right)}$$
$${}\times n\theta_{n}(\ell+2,2\ell+3;-2ikr)\Biggl{\}}\Biggl{]},$$
$$P=\left[{\frac{\lambda_{\ell}\Gamma(2\ell+2)}{\left({\ell!}\right)^{2}\Gamma(\ell+2)}}\right]^{2}\frac{{}_{2}F_{1}\left({1,-\ell;\ell+2;\dfrac{\beta_{\ell}-ik}{\beta_{\ell}+ik}}\right){}_{2}F_{1}\left({1,-\ell;\ell+2;\dfrac{\beta_{\ell}+ik}{\beta_{\ell}-ik}}\right)}{2^{2\ell-2}\left({\beta_{\ell}^{2}+k^{2}}\right)\left[{D_{\ell}(k)}\right]^{2}}.$$
(A.39)

The Wronskian \(J_{\ell}(k,r)\) of the pair of the irregular solutions \(f_{\ell\pm}(k,r)\) expressed in Eq. (A.32) in conjunction with Eqs. (A.33)–(A.39) is well normalized as well as conserved. Hence we get

$$\lim\limits_{r\to 0}J_{\ell}(k,r)=1$$
(A.40)

and

$$\lim\limits_{r\to\infty}J_{\ell}(k,r)=1.$$
(A.41)

The first derivative of the \(J_{\ell}(k,r)\) with respect to \(r\) is obtained as

$$J^{\prime}_{\ell}(k,r)=k^{-1}\textrm{Im}\Big{[}\left({2k}\right)^{2\ell+2}r^{2\ell}$$
(A.42)
$${}\times\left\{{\left({2\ell+2}\right)ikr+\left({\ell+1}\right)\left({2\ell+1}\right)}\right\}A_{1}$$
$${}+i\left({2k}\right)^{2\ell+3}r^{2\ell+1}\left({ikr+\ell+1}\right)\left({\ell+1}\right)\left({A-A^{\ast}}\right)$$
$${}+i\left({2k}\right)^{2\ell+3}\left({\ell+1}\right)\left({2\ell+2}\right)r^{2\ell+1}A$$
$${}-\left({2k}\right)^{2\ell+4}\left({\ell+1}\right)r^{2\ell+2}\left\{{B\left({\ell+2}\right)-\left({\ell+1}\right)A_{2}}\right\}$$
$${}+\frac{\lambda_{\ell}\Gamma(2\ell+2)\left({2k}\right)^{\ell+1}r^{2\ell}}{\Gamma(\ell+2)\left({\ell!}\right)^{2}2^{\ell-1}}\left({T_{1}+T_{2}}\right)$$
$${}+\frac{\lambda_{\ell}\Gamma(2\ell+2)\left({2k}\right)^{\ell+1}r^{2\ell+1}}{\Gamma(\ell+2)\left({\ell!}\right)^{2}2^{\ell-1}}\left({T_{3}+T_{4}}\right)$$
$${}+P\left({\ell+1}\right)r^{2\ell}\big{\{}\left({2\ell+1}\right)MM^{\ast}$$
$${}+r\left({M^{\ast}M_{1}+MM_{1}^{\ast}}\right)\big{\}}+Pr^{2\ell+1}T_{5}\Big{]},$$

where

$$A_{2}=\Psi(\ell+2;2\ell+3;2ikr)$$
(A.43)
$${}\times\Psi(\ell+2;2\ell+3;-2ikr),$$
$$B=\Psi(\ell+1;2\ell+2;2ikr)$$
(A.44)
$${}\times\Psi(\ell+3;2\ell+4;-2ikr),$$
$$X_{1}=2ik\left({\ell+1}\right)\Psi(\ell+2;2\ell+3;-2ikr)$$
(A.45)
$${}\times{}_{2}F_{1}\left({1,-\ell;\ell+2;\frac{\beta_{\ell}-ik}{\beta_{\ell}+ik}}\right),$$
$$Y_{1}=2ik\left({\ell+2}\right)\Psi(\ell+3;2\ell+4;-2ikr)$$
(A.46)
$${}\times{}_{2}F_{1}\left({1,-\ell;\ell+2;\frac{\beta_{\ell}-ik}{\beta_{\ell}+ik}}\right),$$
$$M_{2}=\left({2ik}\right)^{2}\Biggl{[}\frac{\Gamma(\ell+3)k^{\ell+1}}{\left({\beta_{\ell}^{2}+k^{2}}\right)^{\ell+1}}$$
(A.47)
$${}\times\Psi(\ell+3;2\ell+4;-2ikr)-\frac{e^{{-i}\ell\pi}}{2^{2\ell+2}k^{\ell+1}}$$
$${}\times\Biggl{\{}\frac{2ik\left({\ell+2}\right)}{\left({2\ell+2}\right)\left({2\ell+3}\right)\left({\beta_{\ell}-ik}\right)}$$
$${}\times{}_{2}F_{1}\left({1,-\ell;\ell+2;\frac{\beta_{\ell}+ik}{\beta_{\ell}-ik}}\right)$$
$${}\times\Phi(\ell+3;2\ell+4;-2ikr)$$
$${}+\sum\limits_{n=0}^{\infty}\left({\frac{\beta_{\ell}+ik}{2ik}}\right)^{n}\frac{1}{\left({n!}\right)}n\left({n-1}\right)$$
$${}\times\theta_{n-1}(\ell+3,2\ell+4;-2ikr)\Biggl{\}}\Biggl{]},$$
$$T_{1}=\{\left({2\ell+2}\right)ikr+\left({2\ell+1}\right)\left({\ell+1}\right)\}$$
(A.48)
$${}\times\left\{{\frac{MX^{\ast}}{D_{\ell}(k)\left({\beta_{\ell}-ik}\right)}+\frac{M^{\ast}X}{D_{\ell}^{\ast}(k)\left({\beta_{\ell}+ik}\right)}}\right\},$$
$$T_{2}=r\left({ikr+\ell+1}\right)$$
(A.49)
$${}\times\left\{{\frac{MX_{1}^{\ast}+X^{\ast}M_{1}}{D_{\ell}(k)\left({\beta_{\ell}-ik}\right)}+\frac{M^{\ast}X_{1}+XM_{1}^{\ast}}{D_{\ell}^{\ast}(k)\left({\beta_{\ell}+ik}\right)}}\right\},$$
$$T_{3}=\left({2\ell+2}\right)\biggl{\{}\frac{M_{1}X^{\ast}}{D_{\ell}(k)\left({\beta_{\ell}-ik}\right)}$$
(A.50)
$${}+\frac{2ik\left({\ell+1}\right)M^{\ast}Y}{D_{\ell}^{\ast}(k)\left({\beta_{\ell}+ik}\right)}\biggl{\}},$$
$$T_{4}=r\biggl{\{}\frac{M_{2}X^{\ast}+X_{1}^{\ast}M_{1}}{D_{\ell}(k)\left({\beta_{\ell}-ik}\right)}$$
(A.51)
$${}+\frac{2ik\left({\ell+1}\right)\left({M^{\ast}Y_{1}+YM_{1}^{\ast}}\right)}{D_{\ell}^{\ast}(k)\left({\beta_{\ell}+ik}\right)}\biggl{\}}$$

and

$$T_{5}=ik\left\{{\left({2\ell+2}\right)\mbox{ }MM^{\ast}+rMM_{1}^{\ast}}\right\}$$
(A.52)
$${}+\left({2\ell+2+ikr}\right)M^{\ast}M_{1}+r\left({M^{\ast}M_{2}+M_{1}M_{1}^{\ast}}\right).$$

The second derivative of the \(J_{\ell}(k,r)\) is

$$J^{\prime\prime}_{\ell}(k,r)=k^{-1}\textrm{Im}\Big{[}\left({2k}\right)^{2\ell+2}r^{2\ell-1}$$
(A.53)
$${}\times\left\{{\left({2\ell+1}\right)\left({2\ell+2}\right)ikr+2\ell\left({\ell+1}\right)\left({2\ell+1}\right)}\right\}A_{1}$$
$${}+2\left({2k}\right)^{2\ell+4}r^{2\ell+1}\left({\ell+1}\right)^{2}$$
$${}\times\left\{{\left({ikr+\ell+1}\right)+\left({2\ell+2}\right)}\right\}A_{2}$$
$${}+i\left({2k}\right)^{2\ell+3}r^{2\ell}\left[{T_{6}-T_{7}}\right]$$
$${}-\left({2k}\right)^{2\ell+4}r^{2\ell+1}\left({\ell+1}\right)\left({\ell+2}\right)T_{8}$$
$${}-i\left({\ell+1}\right)\left({2k}\right)^{2\ell+5}r^{2\ell+2}T_{9}$$
$${}+\frac{\lambda_{\ell}\Gamma(2\ell+2)\left({2k}\right)^{\ell+1}r^{2\ell-1}}{\Gamma(\ell+2)\left({\ell!}\right)^{2}2^{\ell-1}}\left[{T_{10}+T_{11}+T_{12}}\right]$$
$${}+\frac{\lambda_{\ell}\Gamma(2\ell+2)\left({2k}\right)^{\ell+1}r^{2\ell}}{\Gamma(\ell+2)\left({\ell!}\right)^{2}2^{\ell-1}}\left[{T_{13}+T_{14}+T_{15}}\right]$$
$${}+P\left({2\ell+1}\right)r^{2\ell-1}\!MM^{\ast}\!\left\{{2\ell\left({\ell+1}\right)+ikr\left({2\ell+2}\right)}\right\}$$
$${}+Pr^{2\ell}\left[{T_{16}+T_{17}}\right]+Pr^{2\ell+1}T_{18}$$
$${}+Pr^{2\ell+2}\left({M^{\ast}M_{3}+2M_{2}M_{1}^{\ast}+M_{1}M_{2}^{\ast}}\right)\Big{]}$$

with

$$C=\Psi(\ell+1;2\ell+2;2ikr)$$
(A.54)
$${}\times\Psi(\ell+4;2\ell+5;-2ikr),$$
$$D=\Psi(\ell+2;2\ell+3;2ikr)$$
(A.55)
$${}\times\Psi(\ell+3;2\ell+4;-2ikr),$$
$$X_{2}=\left({2ik}\right)^{2}\left({\ell+1}\right)\left({\ell+2}\right)$$
(A.56)
$${}\times\Psi(\ell+3;2\ell+4;-2ikr)$$
$${}\times{}_{2}F_{1}\left({1,-\ell;\ell+2;\frac{\beta_{\ell}-ik}{\beta_{\ell}+ik}}\right),$$
$$Y_{2}=\left({2ik}\right)^{2}\left({\ell+2}\right)\left({\ell+3}\right)$$
(A.57)
$${}\times\Psi(\ell+4;2\ell+5;-2ikr)$$
$${}\times{}_{2}F_{1}\left({1,-\ell;\ell+2;\frac{\beta_{\ell}-ik}{\beta_{\ell}+ik}}\right),$$
$$M_{3}=-\left({2ik}\right)^{3}\Biggl{[}-\frac{\Gamma(\ell+4)k^{\ell+1}}{\left({\beta_{\ell}^{2}+k^{2}}\right)^{\ell+1}}$$
(A.58)
$${}\times\Psi(\ell+4;2\ell+5;-2ikr)-\frac{e^{-i\ell\pi}}{2^{2\ell+2}k^{\ell+1}}$$
$${}\times\Biggl{\{}\frac{2ik\left({\ell+2}\right)\left({\ell+3}\right)}{\left({2\ell+2}\right)\left({2\ell+3}\right)\left({2\ell+4}\right)\left({\beta_{\ell}-ik}\right)}$$
$${}\times{}_{2}F_{1}\left({1,-\ell;\ell+2;\frac{\beta_{\ell}+ik}{\beta_{\ell}-ik}}\right)$$
$${}\times\Phi(\ell+4;2\ell+5;-2ikr)$$
$${}+\sum\limits_{n=0}^{\infty}\left({\frac{\beta_{\ell}+ik}{2ik}}\right)^{n}\frac{1}{\left({n!}\right)}n\left({n-1}\right)\left({n-2}\right)$$
$${}\times\theta_{n-1}(\ell+4,2\ell+5;-2ikr)\Biggl{\}}\Biggl{]},$$
$$T_{6}=\Big{\{}\left({\ell+1}\right)\left({2\ell+1}\right)\left({2\ell+2}\right)$$
(A.59)
$${}+2\left\{{\left({\ell+1}\right)\left({2\ell+2}\right)ikr+\left({2\ell+1}\right)\left({\ell+1}\right)^{2}}\right\}\Big{\}}A,$$
$$T_{7}=2\Big{\{}\left({\ell+1}\right)\left({2\ell+2}\right)ikr$$
(A.60)
$${}+\left({2\ell+1}\right)\left({\ell+1}\right)^{2}\Big{\}}A^{\ast},$$
$$T_{8}=\left\{{\left({ikr+\ell+1}\right)+2\left({2\ell+2}\right)}\right\}B$$
(A.61)
$${}+\left({ikr+\ell+1}\right)B^{\ast},$$
$$T_{9}=\left({\ell+2}\right)\left({\ell+3}\right)C$$
(A.62)
$${}-2\left({\ell+1}\right)\left({\ell+2}\right)D+\left({\ell+1}\right)\left({\ell+2}\right)D^{\ast},$$
$$T_{10}=\big{\{}\left({2\ell+1}\right)\left({2\ell+2}\right)ikr$$
(A.63)
$${}+2\ell\left({\ell+1}\right)\left({2\ell+1}\right)\big{\}}$$
$${}\times\left\{{\frac{MX^{\ast}}{D_{\ell}(k)\left({\beta_{\ell}-ik}\right)}+\frac{M^{\ast}X}{D_{\ell}^{\ast}(k)\left({\beta_{\ell}+ik}\right)}}\right\},$$
$$T_{11}=r\left\{{\left({4\ell+4}\right)ikr+\left({\ell+1}\right)\left({4\ell+2}\right)}\right\}$$
(A.64)
$${}\times\left\{{\frac{MX_{1}^{\ast}+X^{\ast}M_{1}}{D_{\ell}(k)\left({\beta_{\ell}-ik}\right)}+\frac{M^{\ast}X_{1}+XM_{1}^{\ast}}{D_{\ell}^{\ast}(k)\left({\beta_{\ell}+ik}\right)}}\right\},$$
$$T_{12}=r^{2}\left({ikr+\ell+1}\right)$$
(A.65)
$${}\times\Biggl{\{}\frac{MX_{2}^{\ast}+2X_{1}^{\ast}M_{1}+X^{\ast}M_{2}}{D_{\ell}(k)\left({\beta_{\ell}-ik}\right)}$$
$${}+\frac{M^{\ast}X_{2}+2X_{1}M_{1}^{\ast}+XM_{2}^{\ast}}{D_{\ell}^{\ast}(k)\left({\beta_{\ell}+ik}\right)}\Biggl{\}},$$
$$T_{13}=\left({2\ell+1}\right)\left({2\ell+2}\right)$$
(A.66)
$${}\times\left\{{\frac{M_{1}X^{\ast}}{D_{\ell}(k)\left({\beta_{\ell}-ik}\right)}+\frac{2ik\left({\ell+1}\right)M^{\ast}Y}{D_{\ell}^{\ast}(k)\left({\beta_{\ell}+ik}\right)}}\right\},$$
$$T_{14}=r\left({4\ell+4}\right)\Biggl{\{}\frac{M_{2}X^{\ast}+X_{1}^{\ast}M_{1}}{D_{\ell}(k)\left({\beta_{\ell}-ik}\right)}$$
(A.67)
$${}+\frac{2ik\left({\ell+1}\right)\left({M^{\ast}Y_{1}+YM_{1}^{\ast}}\right)}{D_{\ell}^{\ast}(k)\left({\beta_{\ell}+ik}\right)}\Biggl{\}},$$
$$T_{15}=r^{2}\Biggl{\{}\frac{M_{3}X^{\ast}+2X_{1}^{\ast}M_{2}+M_{1}X_{2}^{\ast}}{D_{\ell}(k)\left({\beta_{\ell}-ik}\right)}$$
(A.68)
$${}+\frac{2ik\left({\ell+1}\right)\left({M^{\ast}Y_{2}+2Y_{1}M_{1}^{\ast}+YM_{2}^{\ast}}\right)}{D_{\ell}^{\ast}(k)\left({\beta_{\ell}+ik}\right)}\Biggl{\}},$$
$$T_{16}=\left\{{\left({\ell+1}\right)\left({4\ell+2}\right)+\left({2\ell+3}\right)ikr}\right\}$$
(A.69)
$${}\times\left({M^{\ast}M_{1}+MM_{1}^{\ast}}\right),$$
$$T_{17}=\left({2\ell+1}\right)\big{\{}ikrMM_{1}^{\ast}$$
(A.70)
$${}+\left({2\ell+2+ikr}\right)M^{\ast}M_{1}\big{\}}$$

and

$$T_{18}=\left({\ell+1}\right)\big{(}MM_{2}^{\ast}+2M_{1}M_{1}^{\ast}$$
(A.71)
$${}+M^{\ast}M_{2}\big{)}+\left({4\ell+4+ikr}\right)\left({M^{\ast}M_{2}+M_{1}M_{1}^{\ast}}\right)$$
$${}+ikr\left({MM_{2}^{\ast}+M_{1}M_{1}^{\ast}}\right).$$

From Eqs. (3) and (A.28) the quantity \(Q_{\ell}(k,r,s)\)reads as

$$Q_{\ell}(k,r,s)$$
(A.72)
$${}=k^{-1}\textrm{Im}\biggl{[}\left({2k}\right)^{2\ell+2}r^{\ell+1}s^{\ell+1}e^{-ikr}e^{iks}$$
$${}\times\Psi(\ell+1;2\ell+2;2ikr)\Psi(\ell+1;2\ell+2;-2iks)$$
$${}+\frac{\lambda_{\ell}\Gamma(2\ell+2)\left({2k}\right)^{\ell+1}}{\Gamma(\ell+2)\left({\ell!}\right)^{2}2^{\ell-1}}r^{\ell+1}s^{\ell+1}e^{-ikr}e^{iks}$$
$${}\times\biggl{\{}\frac{M(s)}{D_{\ell}(k)\left({\beta_{\ell}-ik}\right)}\Psi(\ell+1;2\ell+2;2ikr)$$
$${}\times{}_{2}F_{1}\left({1,-\ell;\ell+2;\frac{\beta_{\ell}+ik}{\beta_{\ell}-ik}}\right)$$
$${}+\frac{M^{\ast}}{D_{\ell}^{\ast}(k)\left({\beta_{\ell}+ik}\right)}\Psi(\ell+1;2\ell+2;-2iks)$$
$${}\times{}_{2}F_{1}\left({1,-\ell;\ell+2;\frac{\beta_{\ell}-ik}{\beta_{\ell}+ik}}\right)\biggl{\}}$$
$${}+Pr^{\ell+1}s^{\ell+1}e^{-ikr}e^{iks}M(s)M^{\ast}\biggl{]}$$

with

$$M(s)=\frac{\Gamma(\ell+1)k^{\ell+1}}{\left({\beta_{\ell}^{2}+k^{2}}\right)^{\ell+1}}$$
(A.73)
$${}\times\Psi(\ell+1;2\ell+2;-2iks)-\frac{e^{-i\ell\pi}}{2^{2\ell+2}k^{\ell+1}}$$
$${}\times\Biggl{\{}\frac{2ik}{\left({\ell+1}\right)\left({\beta_{\ell}-ik}\right)}{}_{2}F_{1}\left({1,-\ell;\ell+2;\frac{\beta_{\ell}+ik}{\beta_{\ell}-ik}}\right)$$
$${}\times\Phi(\ell+1;2\ell+2;-2iks)$$
$${}+\sum\limits_{n=0}^{\infty}\left({\frac{\beta_{\ell}+ik}{2ik}}\right)^{n}\frac{1}{\left({n!}\right)}\theta_{n+1}(\ell+1,2\ell+2;-2iks)\Biggl{\}}.$$

Equation (A.72) in conjunction with Eqs. (A.29)–(A.31) leads to

$$Q^{\prime}_{\ell}(k,r,s)$$
(A.74)
$${}=k^{-1}\textrm{Im}\Big{[}\left({2k}\right)^{2\ell+2}r^{1}s^{\ell+1}e^{-ikr}e^{iks}$$
$${}\times\Psi(\ell+1;2\ell+2;2ikr)\Psi(\ell+1;2\ell+2;-2iks)$$
$${}\times\left({\ell+1-ikr}\right)-i\left({\ell+1}\right)\left({2k}\right)^{2\ell+3}$$
$${}\times r^{1+1}s^{\ell+1}e^{-ikr}e^{iks}\Psi(\ell+1;2\ell+2;-2iks)$$
$${}\times\Psi(\ell+2;2\ell+3;2ikr)+P_{2}s^{\ell+1}e^{iks}M(s)$$
$${}\times\Big{\{}\left({\ell+1-ikr}\right)\Psi(\ell+1;2\ell+2;2ikr)$$
$${}-2ikr\left({\ell+1}\right)\Psi(\ell+2;2\ell+3;2ikr)\Big{\}}$$
$${}+\frac{\lambda_{\ell}\Gamma(2\ell+2)\left({2k}\right)^{\ell+1}r^{\ell}s^{\ell+1}e^{-ikr}e^{iks}}{\Gamma(\ell+2)\left({\ell!}\right)^{2}2^{\ell-1}D_{\ell}^{\ast}(k)\left({\beta_{\ell}+ik}\right)}$$
$${}\times\Psi(\ell+1;2\ell+2;-2iks)$$
$${}\times{}_{2}F_{1}\left({1,-\ell;\ell+2;\frac{\beta_{\ell}-ik}{\beta_{\ell}+ik}}\right)$$
$${}\times\left\{{\left({\ell+1-ikr}\right)M^{\ast}+rM_{1}^{\ast}}\right\}$$
$${}+Pr^{\ell}s^{\ell+1}e^{-ikr}e^{iks}M(s)$$
$${}\times\left\{{\left({\ell+1-ikr}\right)M^{\ast}+rM_{1}^{\ast}}\right\}\Big{]}$$

with

$$P_{2}=\frac{\lambda_{\ell}\Gamma(2\ell+2)\left({2k}\right)^{\ell+1}}{\Gamma(\ell+2)\left({\ell!}\right)^{2}2^{\ell-1}}$$
(A.75)
$${}\times\frac{r^{\ell}e^{-ikr}}{D_{\ell}(k)\left({\beta_{\ell}-ik}\right)}$$
$${}\times{}_{2}F_{1}\left({1,-\ell;\ell+2\frac{\beta_{\ell}+ik}{\beta_{\ell}-ik}}\right).$$

Now the value of the definite integral \(\int_{0}^{\infty}{V(r,s)Q^{\prime}_{\ell}(k,r,s)}ds\) in Eq. (1) together with Eqs. (A.74) and (A.75) and use of Eqs. (A.13), (A.14), (A.22), and (A.25) leads to

$$\int\limits_{0}^{\infty}{V(r,s)Q^{\prime}_{\ell}(k,r,s)}ds$$
(A.76)
$${}=k^{-1}\textrm{Im }\Big{[}\lambda_{\ell}2^{-2\ell}\left({\ell!}\right)^{-2}r^{\ell}e^{-\beta_{\ell}r}$$
$${}\times\Big{[}P_{1}\big{\{}\left({\ell+1-ikr}\right)$$
$${}\times\Psi(\ell+1;2\ell+2;2ikr)$$
$${}-2ikr\left({\ell+1}\right)\Psi(\ell+2;2\ell+3;2ikr)\big{\}}$$
$${}+P_{2}\big{\{}\left({\ell+1-ikr}\right)\Psi(\ell+1;2\ell+2;2ikr)$$
$${}-2ikr\left({\ell+1}\right)\Psi(\ell+2;2\ell+3;2ikr)\big{\}}N$$
$${}+PNr^{\ell}e^{-ikr}\left\{{\left({\ell+1-ikr}\right)M^{\ast}+rM_{1}^{\ast}}\right\}$$
$${}+\lambda_{\ell}\left({\frac{\Gamma(2\ell+2)}{\Gamma(\ell+2)}}\right)^{2}P_{3}\big{\{}\left({\ell+1-ikr}\right)$$
$${}\times M^{\ast}+rM_{1}^{\ast}\big{\}}\Big{]}\Big{]},$$

where

$$P_{1}=\frac{\Gamma(2\ell+2)\left({2k}\right)^{2\ell+2}r^{\ell}e^{-ikr}}{\Gamma(\ell+2)\left({\beta_{\ell}-ik}\right)\left({-2ik}\right)^{2\ell+1}}$$
(A.77)
$${}\times{}_{2}F_{1}\left({1,-\ell;\ell+2;\frac{\beta_{\ell}+ik}{\beta_{\ell}-ik}}\right)$$

and

$$P_{3}=\frac{\left({2k}\right)^{\ell+1}r^{\ell}e^{-ikr}}{\left({-2ik}\right)^{\ell+1}2^{\ell-1}\left({\ell!}\right)^{2}D_{\ell}(k)}$$
(A.78)
$${}\times\frac{1}{\left({\beta_{\ell}^{2}+k^{2}}\right)}$$
$${}\times{}_{2}F_{1}\left({1,-\ell;\ell+2;\frac{\beta_{\ell}+ik}{\beta_{\ell}-ik}}\right)$$
$${}\times{}_{2}F_{1}\left({1,-\ell;\ell+2;\frac{\beta_{\ell}-ik}{\beta_{\ell}+ik}}\right).$$

Equations (1), (A.32), (A.42), (A.53), and (A.76) in conjunction with Eqs. (A.33)–(A.39), (A.43)–(A.52), (A.54)–(A.71), and (A.77), (A.78) produces the desired expression for equivalent local potential \(V_{\ell}(k,r)\) for the Graz separable nonlocal interaction.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behera, A.K., Laha, U., Majumder, M. et al. Applicability of Phase-Equivalent Energy-Dependent Potential. Case Studies. Phys. Atom. Nuclei 85, 124–138 (2022). https://doi.org/10.1134/S1063778822010057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778822010057

Navigation