Log in

Selective Voltammetric and Flow-Injection Amperometric Determination of Acyclovir and Valacyclovir on an Electrode with a Reduced Graphene Oxide–Polyglycine Film Composite

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 01 December 2022

This article has been updated

Abstract

Acyclovir and valacyclovir are oxidized on a glassy carbon electrode (GCE) with immobilized reduced graphene oxide coated with a polyglycine film. We selected the conditions for forming a polymer film, reducing graphene oxide on the GCE, and recording the maximum catalytic current on the composite surface. A procedure was developed for the selective voltammetric determination of acyclovir and valacyclovir on an electrode with a reduced graphene oxide–polyglycine film composite. A method is proposed for the amperometric detection of guanine-based antiviral drugs with this modified electrode under the conditions of flow-injection analysis. The dependence of the analytical signal on the concentration of acyclovir and valacyclovir is linear up to 5 × 10–6 M in the static mode and up to 1 × 10–7 M in the flow-injection system. The developed voltammetric method for determining acyclovir and valacyclovir was tested in the analysis of pharmaceutical preparations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Change history

REFERENCES

  1. Herlem, G., Zeggari, R., Rauch, J.Y., Monney, S., Anzola, F.T., Guillaume, Y., Andre, C., and Gharbi, T., Talanta, 2010, vol. 82, no. 1, p. 417.

    Article  CAS  PubMed  Google Scholar 

  2. Han, L., Zhao, Y., Chang, C., and Li, F., J. Electroanal. Chem., 2018, vol. 817, p. 141.

    Article  CAS  Google Scholar 

  3. Das, T.K. and Prusty, S., Polym.-Plast. Technol. Eng., 2013, vol. 52, no. 4, p. 319.

    Article  CAS  Google Scholar 

  4. Eda, G. and Chhowalla, M., Nano Lett., 2009, vol. 9, no. 2, p. 814.

    Article  CAS  PubMed  Google Scholar 

  5. Terrones, M., Martín, O., González, M., Pozuelo, J., Serrano, B., Cabanelas, J.C., Vega-Díaz, S.M., and Baselga, J., Adv. Mater., 2011, vol. 23, no. 44, p. 5302.

    Article  CAS  PubMed  Google Scholar 

  6. Liu, H., Zhang, G., Zhou, Y., Gao, M., and Yang, F., J. Mater. Chem A, 2013, vol. 1, no. 44, p. 13902.

    Article  CAS  Google Scholar 

  7. William, S., Hummers, J.R., and Richard, E.O., J. Am. Chem. Soc., 1958, vol. 80, no. 6, p. 1339.

    Article  Google Scholar 

  8. Palakollu, V.N., Thapliyal, N., Chiwunze, T.E., Karpoormath, R., Karunanidhi, S., and Cherukupalli, S., Mater. Sci. Eng., C, 2017, vol. 77, p. 394.

    Article  CAS  Google Scholar 

  9. Shin, H.-J., Kim, K.K., Benayad, A., Yoon, S.-M., Park, H.K., Jung, I.-S., **, M.H., Jeong, H.-K., Kim, J.M., Choi, J.-Y., and Lee, Y.H., Adv. Funct. Mater., 2009, vol. 19, no. 12, p. 1987.

    Article  CAS  Google Scholar 

  10. Kumar, D.R., Kesavan, S., Baynosa, M.L., and Shim, J.J., Electrochim. Acta, 2017, vol. 246, p. 1131.

    Article  CAS  Google Scholar 

  11. Guo, H.-L., Wang, X.-F., Qian, Q.-Y., Wang, F.-B., and **a, X.-H., ACS Nano, 2009, vol. 3, no. 9, p. 2653.

    Article  CAS  PubMed  Google Scholar 

  12. Kuila, T., Mishra, A.K., Khanra, P., Kim, N.H., and Lee, J.H., Nanoscale, 2013, vol. 5, no. 1, p. 52.

    Article  CAS  PubMed  Google Scholar 

  13. Kaplun, M.M., Smirnov, Yu. E., Mikli, V., and Maleev, V.V., Russ. J. Electrochem., 2001, vol. 37, no. 9, p. 914.

    Article  CAS  Google Scholar 

  14. Shaidarova, L.G., Ziganshina, S.A., Tikhonova, L.N., and Budnikov, H.C., J. Anal. Chem., 2003, vol. 58, no. 12, p. 1144.

    Article  CAS  Google Scholar 

  15. Praktikum po elektrokhimii: uchebnoe posobie (Practical Works on Electrochemistry: Study Guide), Damaskin, B.B., Ed., Moscow: Vysshaya Shkola, 1991.

    Google Scholar 

  16. Budnikov, H.C., Ulakhovich, N.A., and Medyantseva, E.P., Osnovy elektroanaliticheskoi khimii (Fundamentals of Electroanalytical Chemistry), Kazan: Kazansk. Gos. Univ., 1986.

  17. Budnikov, H.C., Printsipy i primenenie vol’tampernoi ostsillograficheskoi polyarografii (Principles and Applications of Current–Voltage Oscillographic Polarography), Kazan: Kazansk. Gos. Univ., 1975.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Shaidarova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaidarova, L.G., Gedmina, A.V., Poadnyak, A.A. et al. Selective Voltammetric and Flow-Injection Amperometric Determination of Acyclovir and Valacyclovir on an Electrode with a Reduced Graphene Oxide–Polyglycine Film Composite. J Anal Chem 77, 681–687 (2022). https://doi.org/10.1134/S1061934822060156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934822060156

Keywords:

Navigation