Log in

Voltammetric Determination of Acyclovir in Drugs Using an Electrode Modified by Ruthenium Hexachloroplatinate or Hexacyanocobaltate Film

  • STRUCTURE OF CHEMICAL COMPOUNDS, METHODS OF ANALYSIS AND PROCESS CONTROL
  • Published:
Pharmaceutical Chemistry Journal Aims and scope

A voltammetric method for determining acyclovir using a chemically modified electrode with catalytic properties was developed. The catalytic properties for acyclovir oxidation of glassy-carbon electrodes modified by inorganic films of Ru(III) hexachloroplatinate or hexacyanocobaltate were compared. The catalytic effect was manifested as a decreased potential and multiply increased oxidation current at the proposed film electrodes. The greatest catalytic effect was observed using an electrode with a film of Ru(III) hexachloroplatinate. The catalytic current depended linearly on the analyte concentration in the range from 0.5 μM to 5 mM. The proposed method was used to determine acyclovir in drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. Wang, L. Chen, X. Chen, et al., Anal. Chim. Acta, 576(1), 17 – 22 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. P. Wang, T. Gan, J. Zhang, et al., J. Mol. Liq., 177, 129 – 132 (2013).

    Article  CAS  Google Scholar 

  3. N. P. Shetti, S. J. Malode, and S. T. Nandibewoor, Bioelectrochemistry, 88, 76 – 83 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. D. R. Weller, H. H. Balfour, Jr., and H. E. Vezina, Biomed. Chromatogr., 23(8), 822 – 827 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. M. Sharma, P. Nautiyal, S. Jain, et al., J. AOAC Int., 93(5), 1462 – 1467 (2010).

    CAS  PubMed  Google Scholar 

  6. L. Yu and B. **ang, Microchem. J., 90(1), 63 – 66 (2008).

    Article  CAS  Google Scholar 

  7. M. K. S. El-Din, A. M. El-Brashy, Z. A. Sheribah, et al., J. AOAC Int., 89(3), 631 – 641 (2006).

    CAS  PubMed  Google Scholar 

  8. M. M. Ayad, H. E. Abdellatef, M. M. El-Henawee, et al., Spectrochim. Acta, Part A, 66(1), 106 – 110 (2007).

    Article  Google Scholar 

  9. A. A. Mustafa, S. A. Abdel-Fattah, S. S. Toubar, et al., J. Anal. Chem., 59(1), 40 – 45 (2004).

    Article  Google Scholar 

  10. J. Lv, L. Luo, and Z. Zhang, Anal. Chim. Acta, 510(1), 35 – 39 (2004).

    Article  Google Scholar 

  11. N.Wang, Y. Tang, X. **ong, et al., Anal. Lett., 39(5), 973 – 983 (2006).

    Article  CAS  Google Scholar 

  12. L. G. Shaidarova and G. K. Budnikov, Zh. Anal. Khim., 63(10), 1014 – 1037 (2008).

    Google Scholar 

  13. L. G. Shaidarova and G. K. Budnikov, in: Problems in Analytical Chemistry, Vol. 14, Chemical Sensors [in Russian], Yu. G. Vlasov (ed.), Nauka, Moscow (2011), pp. 203 – 284.

    Google Scholar 

  14. M. M. Kaplun, Yu. E. Smironv, V. Mikli, et al., Elektrokhimiya, 37(9), 1065 – 1075 (2001).

    Google Scholar 

  15. J. Pei, X.-Y. Li, and J. Buffle, Electrochim. Acta, 45(10), 1581 – 1593 (2000).

    Article  CAS  Google Scholar 

  16. S.-M. Chen and J.-L. Lin, J. Electroanal. Chem., 567(2), 233 – 242 (2004).

    Article  CAS  Google Scholar 

  17. J. Pei and X.-Y. Li, Talanta, 51(6), 1107 – 1115 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. S.-M. Chen, S.-H. Li, and R. Thangamuthu, Electroanalysis, 21(13), 1505 – 1513 (2009).

    Article  CAS  Google Scholar 

  19. V. D. Ivanov and A. R. Alieva, Elektrokhimiya, 38(8), 966 – 975 (2001).

    Google Scholar 

  20. L. G. Shaidarova, A. V. Gedmina, E. R. Zhaldak, et al., Khim.-farm. Zh., 47(12), 48 – 52 (2013).

    Google Scholar 

  21. B. B. Damaskin, O. A. Petrii, and B. I. Podlovchenko, Practicum in Electrochemistry [in Russian], Vysshaya Shkola, Moscow (1991), p. 288.

    Google Scholar 

  22. G. K. Budnikov, V. N. Maistrenko, and M. R. Vyaselev, Principles of Modern Electrochemical Analysis [in Russian], Mir, Binom LZ, Moscow (2003), p. 592.

    Google Scholar 

  23. A. K. Charykov, Mathematical Processing of Results of Chemical Analysis: Methods of Detecting and Evaluating Errors [in Russian], Khimiya, Leningrad (1984), p. 168.

    Google Scholar 

  24. A. A. Sheryakova, State Pharmacopoeia of the Republic of Belarus, Vol. 3. Quality Control of Pharmaceutical Drug Substances [in Russian], Center for Expertise and Testing in Healthcare, V. Khoruzhei Minsk State Professional Technical College of Polygraphy, Minsk (2009), p. 728.

    Google Scholar 

Download references

Acknowledgments

The work was supported financially by the Russian Foundation for Basic Research (Grants No. 12-03-97031 and 13-03-01101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Shaidarova.

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 48, No. 11, pp. 37 – 43, November, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaidarova, L.G., Gedmina, A.V., Zhaldak, E.R. et al. Voltammetric Determination of Acyclovir in Drugs Using an Electrode Modified by Ruthenium Hexachloroplatinate or Hexacyanocobaltate Film. Pharm Chem J 48, 747–752 (2015). https://doi.org/10.1007/s11094-015-1186-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-015-1186-z

Keywords

Navigation