Log in

Dispersive Liquid–Liquid Microextraction Followed by Solidified Floating Organic Drop for Hexavalent Chromium Determination: a Method for Occupational and Environmental Exposure Monitoring for Heavy Metals

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Dispersive liquid−liquid microextraction solidified floating organic drop (SFOD−DLLME) technique was used for sample treatment and extraction of hexavalent chromium from spiked and real samples of workplace ambient air and urine of chromium electroplating workers. Validation of the SFOD−DLLME technique with three solvents, namely, 1-undecanol, 2-dodecanol and n-hexadecane, showed that pH 4, stirring rates of 600 rpm for 1-undecanol and 2-dodecanol and 800 rpm for n-hexadecane, extraction times of 10 min for 1-undecanol and 2-dodecanol and 15 min for n-hexadecane were the conditions allowing to reach the highest extraction efficiency. The maximum acquired enrichment factor was 211 and LODs were in the range of 0.015–0.05 µg/L, and the calibration curves were linear in the range of 0.5–30 µg/L. The results showed that SFOD−DLLME coupled with atomic absorption spectroscopy is a precise and sensitive technique for the determination of hexavalent chromium for biological monitoring of occupational/environmental samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Gallios, G.P. and Vaclavikova, M., Environ. Chem. Lett., 2008, vol. 6, p. 235.

    Article  CAS  Google Scholar 

  2. Environmental Protection Agency, Toxicological review of trivalent chromium (CAS no. 16065-83-1), in Support of Summery Information on the Integrated Risk System (IRIS), Washington, DC: US Environmental Protection Agency, 1998.

    Google Scholar 

  3. Priego-Copote, F. and Luque de Castro, M.D., J. Chromatogr. A, 2006, vol. 1113, p. 244.

    Article  Google Scholar 

  4. Agents Classified by the IARC Monographs, vol. 1–120, 2012. http://monographs.iarc.fr/ENG/Classification/ClassificationsAlphaOrder.pdf. Accessed December 20, 2017.

  5. Nriagu, J.O. and Nieboer, E., Chromium in the Natural and Human Environments, New York: Wiley, 1988.

    Google Scholar 

  6. Ahmadi, S.H., Haji Shabani, A.M., Dadfarnia, S., and Taei, M., Turk. J. Chem., 2007, vol. 31, p, 191.

  7. Saygi, K.O., Tuzen, M., Soylak, M., and Elci, L., J. Hazard. Mater., 2008, vol. 153, p. 1009.

    Article  CAS  Google Scholar 

  8. Alves, V.N. and Coelho, N.M.M., Microchem. J., 2013, vol. 109, p. 16.

    Article  CAS  Google Scholar 

  9. Beni, A., Karosi, R., and Posta, J., Microchem. J., 2007, vol. 85, p. 103.

    Article  CAS  Google Scholar 

  10. Wen, S., Wu, J., and Zhu, X., J. Mol. Liq., 2013, vol. 180, p. 59.

    Article  CAS  Google Scholar 

  11. Ezoddin, M., Shemirani, F., and Khani, R., Desalination, 2010, vol. 262, p. 183.

    Article  CAS  Google Scholar 

  12. Matos, G.D., dos Reis, E.B., Costa, A.C.S., and Ferreira, S.L.C., Microchem. J., 2009, vol. 92, p. 135.

    Article  CAS  Google Scholar 

  13. Liang, P. and Sang, H., J. Hazard. Mater., 2008, vol. 154, p. 1115.

    Article  CAS  Google Scholar 

  14. Mirzaei, M., Behzadi, M., Mahmoud Abadi, N., and Beizaei, A., J. Hazard. Mater., 2011, vol. 186, p. 1739.

    Article  CAS  Google Scholar 

  15. Jeannot, M.A. and Cantwell, F.F., Anal. Chem., 1996, vol. 68, p. 2236.

    Article  CAS  Google Scholar 

  16. Liu, H. and Dasgupta, P.K., Anal. Chem., 1996, vol. 68, p. 1817.

    Article  CAS  Google Scholar 

  17. Rezaee, M., Assadi, Y., Milani Hosseini, M.R., Ag-haee, E., Ahmadi, F., and Berijani, S., J. Chromatogr. A, 2006, vol. 1116, no. 1, p. 1.

    Article  CAS  Google Scholar 

  18. Jahromi, E.Z., Bidari, A., Assadi, Y., Milani Hosseini, M.R., and Jamali, M.R., Anal. Chim. Acta, 2007, vol. 585, p. 305.

    Article  Google Scholar 

  19. Hemmatkhah, P., Bidari, A., Jafarvand, S., Hosseini, M.R.M., and Assadi, Y., Microchim. Acta, 2009, vol. 166, p. 69.

    Article  CAS  Google Scholar 

  20. Attari, S.G., Bahrami, A., Shahna, F.G., and Heidari, M., J. Anal. Chem., 2015, vol. 70, p. 1192.

    Article  CAS  Google Scholar 

  21. Khalili Zanjani, M.R., Yamini, Y., Shariati, S., and Jonsson, J.A., Anal. Chim. Acta, 2007, vol. 585, p. 286.

    Article  CAS  Google Scholar 

  22. Mansour, F.R. and Danielson, N.D., Talanta, 2017, vol. 170, p. 22.

    Article  CAS  Google Scholar 

  23. Mandrah, K., Satyanarayana, G.N.V., and Roy, S.K., J. Chromatogr. A, 2017, vol. 1528, p. 10.

    Article  CAS  Google Scholar 

  24. Xu, L., Miao, X., Li, H., Liang, J., and Yang, Z., Microchem. J., 2019, vol. 150, p. 104091.

    Article  CAS  Google Scholar 

  25. Lu, N., He, X., Wang, T., Liu, S., and Hou, X., Microchem. J., 2018, vol. 137, p. 449.

    Article  CAS  Google Scholar 

  26. Viñas, P., Campillo, N., and Andruch, V., TrAC, Trends Anal. Chem., 2015, vol. 68, p. 48.

    Article  Google Scholar 

  27. Guo, X., He, M., Chen, B., and Hu, B., Talanta, 2012, vol. 94, p. 70.

    Article  CAS  Google Scholar 

  28. Dadfarnia, S., Salmanzadeh, A.M., and Haji Shabani, A.M., Anal. Chim. Acta, 2008, vol. 623, p. 163.

    Article  CAS  Google Scholar 

  29. Dadfarnia, S., Haji Shabani, A.M., and Kamranzadeh, E., Talanta, 2009, vol. 79, p. 1061.

    Article  CAS  Google Scholar 

  30. Bidabadi, M.S., Dadfarnia, S., and Haji Shabani, A.M., J. Hazard. Mater., 2009, vol. 166, p. 291.

    Article  CAS  Google Scholar 

  31. Rohani-Moghadam, M., Dadfarnia, S., and Haji-Shabani, A.M., J. Hazard. Mater., 2011, vol. 186, p. 169.

    Article  Google Scholar 

Download references

Funding

Support of this research by the vice chancellor of research and technology of Guilan University of Medical Sciences (grant no. 93121903) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Heidari.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourbakhshi, Y., Heidari, M., Yahaei, E. et al. Dispersive Liquid–Liquid Microextraction Followed by Solidified Floating Organic Drop for Hexavalent Chromium Determination: a Method for Occupational and Environmental Exposure Monitoring for Heavy Metals. J Anal Chem 76, 714–720 (2021). https://doi.org/10.1134/S1061934821060083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934821060083

Keywords:

Navigation