Log in

A Novel Dispersive Liquid-Liquid Microextraction Method Based on Solidification of Floating Organic Drop for Preconcentration of Pd(II) by Graphite Furnace Atomic Absorption Spectrometry after Complexation by a Thienyl Substituted 1,2-Ethanediamine

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A novel dispersive liquid-liquid microextraction method based on solidification of floating organic drop (DLLME-SFO) was developed for the preconcentration of ultratrace amounts of palladium (Pd)(II) before its determination by electrothermal atomic absorption spectrometry. Diphenyl ether (m.p. 26°C) was used for the first time as a heavier than water organic solvent in the developed method. Pd was complexed by N,N′-bis(thiophen-2-ylmethylene)ethane-1,2-diamine to be extracted into the dispersed diphenyl ether phase using acetonitril as the disperser solvent. Upon cooling and centrifugation, the organic solvent was sedimented at the bottomn and the aqueous phase was easily decantated. Some factors influencing the extraction efficiency of Pd(II) and its subsequent determination, including extraction and dispersive solvent type and volume, pH of sample solution, concentration of the chelating agent and salting out effect, were studied and optimized both with univariate and multivariate methods. Under the optimized conditions, the calibration graph exhibited linearity over a range of 10 – 120 µg L−1. The enrichment factor was 83.3, the detection limit for Pd (3σ) was 47 ng L−1 and the relative standard deviation was 3.2% (n = 10, 1 ng mL−1). The method was successfully applied to the determination of trace amounts of Pd(II) in water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Krishna, M. Ranjit, K. Chandrasekaran, G. Venkateswarlu, and D. Karunasagar, Talanta, 2009, 79, 1454.

    Article  CAS  PubMed  Google Scholar 

  2. R. Merget and G. Rosner, Sci. Total Environ., 2001, 270, 165.

    Article  CAS  PubMed  Google Scholar 

  3. P. Liang, E. Zhao, and F. Li, Talanta, 2009, 77, 1854.

    Article  CAS  PubMed  Google Scholar 

  4. J. Nakajima, M. Ohno, K. Chikama, T. Seki, and K. Oguma, Talanta, 2009, 79, 1050.

    Article  CAS  PubMed  Google Scholar 

  5. M. A. Taher, Z. Daliri, and H. Fazelirad, Chin. Chem. Lett., 2014, 25, 649.

    Article  CAS  Google Scholar 

  6. M. Mohamadi and A. Mostafavi, Talanta, 2010, 81, 309.

    Article  CAS  PubMed  Google Scholar 

  7. J. Pawlak, E. Łodyga-Chruśińska, and J. Chrustowicz, J. Trace Elem. Med. Biol., 2014, 28, 247.

    Article  CAS  PubMed  Google Scholar 

  8. Ş. Tokalıoğlu, T. Oymak, and Ş. Kartal, Anal. Chim. Acta, 2004, 511, 255.

    Article  Google Scholar 

  9. M. Lee, G. Tölg, E. Beinrohr, and P. Tschöpel, Anal. Chim. Acta, 1993, 272, 193.

    Article  CAS  Google Scholar 

  10. M. Aghamohammadi and N. Alizadeh, Anal. Chim. Acta, 2003, 480, 299.

    Article  CAS  Google Scholar 

  11. A. N. Anthemidis, D. G. Themelis, and J. A. Stratis, Talanta, 2001, 54, 37.

    Article  CAS  PubMed  Google Scholar 

  12. F. Shemirani, R. R. Kozani, M. Reza Jamali, Y. Assadi, and M.-R. Milani Hosseini, Int. J. Environ. Anal. Chem., 2006, 86, 1105.

    Article  CAS  Google Scholar 

  13. J. Fang, Y. Jiang, X.-P. Yan, and Z.-M. Ni, Environ. Sci. Technol., 2005, 39, 288.

    Article  CAS  PubMed  Google Scholar 

  14. S. Daniel, R. Praveen, and T. P. Rao, Anal. Chim. Acta, 2006, 570, 79.

    Article  CAS  Google Scholar 

  15. S. Woińska and B. Godlewska-Żyłkiewicz, Spectrochim. Acta, Part B, 2011, 66, 522.

    Article  Google Scholar 

  16. G. Z. Tsogas, D. L. Giokas, A. G. Vlessidis, and N. P. Evmiridis, Talanta, 2008, 76, 635.

    Article  CAS  PubMed  Google Scholar 

  17. M. B. Melwanki and M.-R. Fuh, J. Chromatogr. A, 2008, 1198, 1.

    Article  PubMed  Google Scholar 

  18. F. Pena-Pereira, I. Lavilla, and C. Bendicho, Spectrochim. Acta, Part B, 2009, 64, 1.

    Article  Google Scholar 

  19. L. Kocúrová, I. S. Balogh, J. Šandrejová, and V. Andruch, Microchem. J., 2012, 102, 11.

    Article  Google Scholar 

  20. H. Yan and H. Wang, J. Chromatogr. A, 2013, 1295, 1.

    Article  CAS  PubMed  Google Scholar 

  21. V. Andruch, L. Kocúrová, I. S. Balogh, and J. Škrlíková, Microchem. J., 2012, 102, 1.

    Article  CAS  Google Scholar 

  22. M.-I. Leong and S.-D. Huang, J. Chromatogr. A, 2008, 1211, 8.

    Article  CAS  PubMed  Google Scholar 

  23. L. E. Vera-Avila, T. Rojo-Portillo, R. Covarrubias-Herrera, and A. Peña-Alvarez, Anal. Chim. Acta, 2013, 805, 60.

    Article  CAS  PubMed  Google Scholar 

  24. T. Asadollahi, S. Dadfarnia, and A. M. H. Shabani, Talanta, 2010, 82, 208.

    Article  CAS  PubMed  Google Scholar 

  25. D.-Q. Wang, Q. Wang, and L.-J. **ao, Acta Crystallogr. Sect. E: Struct. Rep. Online, 2007, 63, 4865.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Payman Hashemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ragheb, E., Hashemi, P., Alizadeh, K. et al. A Novel Dispersive Liquid-Liquid Microextraction Method Based on Solidification of Floating Organic Drop for Preconcentration of Pd(II) by Graphite Furnace Atomic Absorption Spectrometry after Complexation by a Thienyl Substituted 1,2-Ethanediamine. ANAL. SCI. 31, 119–124 (2015). https://doi.org/10.2116/analsci.31.119

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.31.119

Keywords

Navigation