Log in

Neutron Ray-Tracing Simulations of a New Supermirror Guide for the Osiris Spectrometer

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

A new supermirror guide has been proposed to replace the current neutron guide of the indirect time-of-flight near-backscattering spectrometer OSIRIS at the ISIS facility. Here we present an extensive Monte Carlo simulation study for the design and optimisation of a new guide system. Among the several guide geometry assessed, a curved guide with elliptical defocusing and focusing sections is shown to perform best. The estimated gain in intensity is a factor of 5–6 at the sample position with a homogeneous distribution of the divergence. The elliptic geometry results in a smaller beam spot and smaller samples will particularly benefit from this upgrade. The proposed guide replacement will ensure that the OSIRIS spectrometer will remain competitive in the years to come.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Notes

  1. See McStas documentation [23] for the empirical formula modelling the reflectivity profile.

REFERENCES

  1. C. J. Carlile and M. A. Adams, Phys. B (Amsterdam, Neth.) 182, 431 (1992). https://doi.org/10.1016/0921-4526(92)90047-V

    Article  CAS  Google Scholar 

  2. C. J. Carlile, M. A. Adams, P. S. R. Krishna, M. Prager, K. Shibata, and P. Westerhuijs, Nucl. Instrum. Methods Phys. Res., Sect. A 338, 78 (1994). https://doi.org/10.1016/0168-9002(94)90165-1

    Article  Google Scholar 

  3. D. Martín y Marero, S. Campbell, and C. J. Carlile, J. Phys. Soc. Jpn. 65, 245 (1996).

    Google Scholar 

  4. M. T. F. Telling, S. I. Campbell, D. Engberg, D. Martín y Marero, and K. H. Andersen, Phys. Chem. Chem. Phys. 7, 1255 (2005). https://doi.org/10.1039/B413934H

    Article  CAS  Google Scholar 

  5. F. Demmel, D. McPhail, J. Crawford, D. Maxwell, K. Pokhilchuk, V. Garcia-Sakai, S. Mukhopadyay, M. T. F. Telling, F. J. Bermejo, N. T. Skipper, and F. Fernandez-Alonso, EPJ Web Conf. 83, 03003 (2015). https://doi.org/10.1051/epjconf/20158303003

  6. P. Willendrup, E. Farhi, E. Knudsen, U. Filges, and K. Lefmann, J. Neutron Res. 17, 35 (2014). https://doi.org/10.3233/JNR-130004

    Article  Google Scholar 

  7. P. Willendrup, E. Farhi, and K. Lefmann, Phys. B (Amsterdam, Neth.) 350, E735 (2004). https://doi.org/10.1016/j.physb.2004.03.193

    Article  CAS  Google Scholar 

  8. K. Lefmann and K. Nielsen, Neutron News 10 (3), 20 (1999). https://doi.org/10.1080/10448639908233684

    Article  Google Scholar 

  9. F. Demmel and K. Pokhilchuk, Nucl. Instrum. Methods Phys. Res., Sect. A 767, 426 (2014). https://doi.org/10.1016/j.nima.2014.09.019

    Article  CAS  Google Scholar 

  10. C. Stock, C. Broholm, Y. Zhao, F. Demmel, H. J. Kang, K. C. Rule, and C. Petrovic, Phys. Rev. Lett. 109, 167207 (2012). https://doi.org/10.1103/PhysRevLett.109.167207

    Article  CAS  Google Scholar 

  11. W. J. Gannon, I. A. Zaliznyak, L. S. Wu, A. E. Feiguin, A. M. Tsvelik, F. Demmel, Y. Qiu, J. R. D. Copley, M. S. Kim, and M. C. Aronson, Nat. Commun. 10, 1123 (2019). https://doi.org/10.1038/s41467-019-08715-y

    Article  CAS  Google Scholar 

  12. T. J. Willis, D. G. Porter, D. J. Voneshen, S. Uthayakumar, F. Demmel, M. J. Gutmann, M. Roger, K. Refson, and J. P. Goff, Sci. Rep. 8, 3210 (2018). https://doi.org/10.1038/s41598-018-21354-5

    Article  CAS  Google Scholar 

  13. A. Lovell, F. Fernandez-Alonso, N. T. Skipper, K. Refson, S. M. Bennington, and S. F. Parker, Phys. Rev. Lett. 101, 126101 (2008). https://doi.org/10.1103/PhysRevLett.101.126101

    Article  CAS  Google Scholar 

  14. F. Fernandez-Alonso, F. J. Bermejo, C. Cabrillo, R. O. Loutfy, V. Leon, and M. L. Saboungi, Phys. Rev. Lett. 98, 215503 (2007). https://doi.org/10.1103/PhysRevLett.98.215503

    Article  CAS  Google Scholar 

  15. C. Schanzer, P. Böni, U. Filges, and T. Hils, Nucl. Instrum. Methods Phys. Res., Sect. A 529, 63 (2004). https://doi.org/10.1016/j.nima.2004.04.178

    Article  CAS  Google Scholar 

  16. P. Böni, Nucl. Instrum. Methods Phys. Res., Sect. A 586, 1 (2008). https://doi.org/10.1016/j.nima.2007.11.059

    Article  CAS  Google Scholar 

  17. M. Janoschek, P. Böni, and M. Braden, Nucl. Instrum. Methods Phys. Res., Sect. A 613, 119 (2010). https://doi.org/10.1016/j.nima.2009.10.164

    Article  CAS  Google Scholar 

  18. C. Pelley, F. Kargl, V. Garcia Sakai, M. T. F. Telling, F. Fernandez-Alonso, and F. Demmel, J. Phys.: Conf. Ser. 251, 012063 (2010). https://doi.org/10.1088/1742-6596/251/1/012063

    Article  Google Scholar 

  19. H. Jacobsen, K. Lieutenant, C. Zendler, and K. Lefmann, Nucl. Instrum. Methods Phys. Res., Sect. A 717, 696 (2013). https://doi.org/10.1016/j.nima.2013.03.048

    Article  CAS  Google Scholar 

  20. C. Zendler, D. Nekrassov, and K. Lieutenant, Nucl. Instrum. Methods Phys. Res., Sect. A 746, 39 (2014). https://doi.org/10.1016/j.nima.2014.01.044

    Article  CAS  Google Scholar 

  21. D. M. Rodriguez, D. D. DiJulio, and P. M. Bentley, Nucl. Instrum. Methods Phys. Res., Sect. A 808, 101 (2016). https://doi.org/10.1016/j.nima.2015.11.057

    Article  CAS  Google Scholar 

  22. K. H. Klenø, K. Lieutenant, K. H. Andersen, and K. Lefmann, Nucl. Instrum. Methods Phys. Res., Sect. A 696, 75 (2012). https://doi.org/10.1016/j.nima.2012.08.027

    Article  CAS  Google Scholar 

  23. McStas. http://www.mcstas.org. Accessed June 27, 2019

  24. Swiss Neutronics. https://www.swissneutronics.ch. Accessed June 6, 2019

  25. L. Chapon, P. Manuel, P. Radaelli, C. Benson, L. Perrott, S. Ansell, N. Rhodes, D. Raspino, D. Duxbury, E. Spill, and J. Norris, Neutron News 22 (2), 22 (2011). https://doi.org/10.1080/10448632.2011.569650

    Article  Google Scholar 

Download references

Funding

This work was supported by the Science and Technology Facilities Council (STFC) and by the Swedish Research Council (VR, Grant no. 2016-06958).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Perrichon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perrichon, A., Fernandez-Alonso, F., Wolff, M. et al. Neutron Ray-Tracing Simulations of a New Supermirror Guide for the Osiris Spectrometer. J. Surf. Investig. 14 (Suppl 1), S169–S174 (2020). https://doi.org/10.1134/S1027451020070381

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451020070381

Keywords:

Navigation