Log in

Biological Diversity of Genes Encoding Wheat Defensin Homologs

  • PLANT GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Antimicrobial peptides (AMPs) are major components of innate immunity in plants and animals. AMP genes have significant intra- and interspecific polymorphism, the role of which is poorly understood. Previously, by high-throughput transcriptome sequencing of wheat plants, we identified defensin genes up-regulated upon infection with the pathogenic fungus Fusarium oxysporum and/or treatment with resistance inducers. In the present work, a bioinformatic search in NCBI databases for peptide homologs of these defensins was carried out using the sequences of their γ-cores, the sites of the molecules responsible for antimicrobial activity. DEFL1-16 homologs were identified in 95 species of angiosperms belonging to 48 families and 30 orders of monocotyledonous and dicotyledonous plants. The ubiquitous distribution of this defensin in angiosperms suggests its involvement not only in defense but also in other processes in flowering plants. Homologs of other defensins induced by infection were found only in plants of the Poaceae family, which suggests the existence of a Poaceae-specific defense mechanism associated with the expression of these defensins. Among the γ-core variants of wild plant defensins identified in the study, the peptides with better antimicrobial activity compared to wheat may be present, which are of considerable interest for the development of new antibiotics for medicine and agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Zasloff, M., Antimicrobial peptides of multicellular organisms, Nature, 2002, no. 415, pp. 389—395. https://doi.org/10.1038/415389a

  2. Tam, J.P., Wang, S., Wong, K.H., and Tan, W.L., Antimicrobial peptides from plants, Pharmaceuticals, 2015, vol. 8, no. 4, pp. 711—757. https://doi.org/10.3390/ph8040711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li, J., Hu, S., Jian, W., et al., Plant antimicrobial peptides: structures, functions, and applications, Bot. Stud., 2021, vol. 62, no. 1. https://doi.org/10.1186/s40529-021-00312-x

  4. Lima, A.M., Azevedo, M.I.G., Sousa, L.M., et al., Plant antimicrobial peptides: an overview about classification, toxicity and clinical applications, Int. J. Biol. Macromol., 2022, vol. 214, pp. 10—21. https://doi.org/10.1016/j.ijbiomac.2022.06.043

    Article  CAS  PubMed  Google Scholar 

  5. Zou, F., Tan, C., Shinali, T.S., et al., Plant antimicrobial peptides: a comprehensive review of their classification, production, mode of action, functions, applications, and challenges, Food Funct., 2023, vol. 14, no. 12, pp. 5492—5515. https://doi.org/10.1039/d3fo01119d

    Article  CAS  PubMed  Google Scholar 

  6. Lazzaro, B.P., Zasloff, M., and Rolff, J., Antimicrobial peptides: application informed by evolution, Science, 2020, vol. 368, no. 6490. https://doi.org/10.1126/science.aau5480

  7. Zhu, Y., Hao, W., Wang, X., et al., Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug-resistant infections, Med. Res. Rev., 2022, vol. 42, no. 4, pp. 1377—1422. https://doi.org/10.1002/med.21879

    Article  CAS  PubMed  Google Scholar 

  8. Yount, N.Y. and Yeaman, M.R., Multidimensional signatures in antimicrobial peptides, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, no. 19, pp. 7363—7368. https://doi.org/10.1073/pnas.0401567101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Odintsova, T.I., Slezina, M.P., Istomina, E.A., et al., Defensin-like peptides in wheat analyzed by whole-transcriptome sequencing: a focus on structural diversity and role in induced resistance, Peer J., 2019, vol. 7. https://doi.org/10.7717/peerj.6125

  10. Slezina, M.P., Istomina, E.A., Kulakovskaya, E.V., et al., The γ-core motif peptides of AMPs from grasses display inhibitory activity against human and plant pathogens, Int. J. Mol. Sci., 2022, vol. 23, no. 15. https://doi.org/10.3390/ijms23158383

  11. https://blast.ncbi.nlm.nih.gov/Blast.cgi.

  12. Bendtsen, J.D., Nielsen, H., von Heijne, G., and Brunak, S., Improved prediction of signal peptides: SignalP 3.0, J. Mol. Biol., 2004, vol. 340, no. 4, pp. 783—795. https://doi.org/10.1016/j.jmb.2004.05.028

    Article  CAS  PubMed  Google Scholar 

  13. Kumar, S., Stecher, G., and Tamura, K., MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 2016, vol. 33, no. 7, pp. 1870—1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. The Angiosperm Phylogeny Group, Chase, M.W., Christenhusz, M.J.M., et al., An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV, Bot. J. Linn. Soc., 2016, vol. 181, no. 1, pp. 1—20. https://doi.org/10.1111/boj.12385

    Article  Google Scholar 

  15. Vekhov, V.N., Zostera morskaya Belogo morya (Common Eelgrass of the White Sea), Moscow: Mosk. Gos. Univ., 1992.

  16. Zhizn’ rastenii (Plant Life), vol. 5, part 2: Tsvetkovye rasteniya (Flowering Plants), Takhtadzhyan, A.L., Ed., Moscow: Prosveshchenie, 1981.

  17. Popov, A.P., Lekarstvennye rasteniya v narodnoi meditsine (Medicinal Plants in Alternative Medicine), Kiev: Zdorov’ya, 1967.

  18. Usenko, N.V., Derev’ya, kustarniki i liany Dal’nego Vostoka (Trees, Shrubs, and Woody Vines of the Far East), Khabarovsk: Khabarovsk. Kn. Izd., 1984, pp. 110—111.

  19. Li, P.-H., Shih, Y.-J., Lu, W.-C., et al., Antioxidant, antibacterial, anti-inflammatory, and anticancer properties of Cinnamomum kanehirae Hayata leaves extracts, Arab. J. Chem., 2023, vol. 16, no. 7, p. 104873. https://doi.org/10.1016/j.arabjc.2023.104873

    Article  CAS  Google Scholar 

  20. Endress, P.K., Trochodendraceae, in Flowering Plants Dicotyledons: The Families and Genera of Vascular Plants, Berlin: Springer-Verlag, 1993, vol. 2, pp. 599—602. https://doi.org/10.1007/978-3-662-02899-5_74

    Book  Google Scholar 

  21. Sun, Y., Deng, T., Zhang, A., et al., Genome sequencing of the endangered Kingdonia uniflora (Circaeasteraceae, Ranunculales) reveals potential mechanisms of evolutionary specialization, iScience, 2020, vol. 23, no. 5. https://doi.org/10.1016/j.isci.2020.101124

  22. Li, C., Duan, C., Zhang, H., et al., Adaptative mechanisms of halophytic Eutrema salsugineum encountering saline environment, Front. Plant Sci., 2022, vol. 13. https://doi.org/10.3389/fpls.2022.909527

  23. Dupin, S.E., Geurts, R., and Kiers, E.T., The non-legume Parasponia andersonii mediates the fitness of nitrogen-fixing rhizobial symbionts under high nitrogen conditions, Front. Plant Sci., 2020, vol. 10. https://doi.org/10.3389/fpls.2019.01779

  24. Clarke, C.R., Timko, M.P., Yoder, J.I., et al., Molecular dialog between parasitic plants and their hosts, Annu. Rev. Phytopathol., 2019, vol. 57, pp. 279—299. https://doi.org/10.1146/annurev-phyto-082718-100043

    Article  CAS  PubMed  Google Scholar 

  25. Conran, J.G., Cephalotaceae, in Flowering Plants Dicotyledons: The Families and Genera of Vascular Plants, Berlin: Springer-Verlag, 2004, vol. 6, pp. 65—68. https://doi.org/10.1007/978-3-662-07257-8_7

    Book  Google Scholar 

  26. Zhizn’ rastenii (Plant Life), vol. 6: Tsvetkovye rasteniya (Flowering Plants), Takhtadzhyan, A.L., Ed., Moscow: Prosveshchenie, 1982.

  27. Li, C.J., Tsang, S.F., Tsai, C.H., et al., Momordica charantia extract induces apoptosis in human cancer cells through caspase- and mitochondria-dependent pathways, Evid. Based Complement. Alternat. Med., 2012, vol. 2012. https://doi.org/10.1155/2012/261971

  28. Zhang, J., Hunto, S.T., Yang, Y., et al., Tabebuia impetiginosa: a comprehensive review on traditional uses, phytochemistry, and immunopharmacological properties, Molecules, 2020, vol. 25, no. 18. https://doi.org/10.3390/molecules25184294

  29. Huang, W., Zhang, L., Columbus, J.T., et al., A well-supported nuclear phylogeny of Poaceae and implications for the evolution of C4 photosynthesis, Mol. Plant, 2022, vol. 15, no. 4, pp. 755—777. https://doi.org/10.1016/j.molp.2022.01.015

    Article  CAS  PubMed  Google Scholar 

  30. Slezina, M.P., Istomina, E.A., Kulakovskaya, E.V., et al., Synthetic oligopeptides mimicking γ-core regions of cysteine-rich peptides of Solanum lycopersicum possess antimicrobial activity against human and plant pathogens, Curr. Issues Mol. Biol., 2021, vol. 43, no. 3, pp. 1226—1242. https://doi.org/10.3390/cimb43030087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Slezina, M.P., Istomina, E.A., Korostyleva, T.V., et al., Molecular insights into the role of cysteine-rich peptides in induced resistance to Fusarium oxysporum infection in tomato based on transcriptome profiling, Int. J. Mol. Sci., 2021, vol. 22, no. 11. https://doi.org/10.3390/ijms22115741

  32. Stotz, H.U., Spence, B., and Wang, Y., A defensin from tomato with dual function in defense and development, Plant Mol. Biol., 2009, vol. 71, nos. 1—2, pp. 131—143. https://doi.org/10.1007/s11103-009-9512-z

    Article  CAS  PubMed  Google Scholar 

  33. Allen, A., Snyder, A.K., Preuss, M., et al., Plant defensins and virally encoded fungal toxin KP4 inhibit plant root growth, Planta, 2008, vol. 227, no. 2, pp. 331—339. https://doi.org/10.1007/s00425-007-0620-1

    Article  CAS  PubMed  Google Scholar 

  34. Mith, O., Benhamdi, A., Castillo, T., et al., The antifungal plant defensin AhPDF1.1b is a beneficial factor involved in adaptive response to zinc overload when it is expressed in yeast cells, Microbiol. Open, 2015, vol. 4, no. 3, pp. 409—422. https://doi.org/10.1002/mbo3.248

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (grant no. 22-16-00010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Odintsova.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slezina, M.P., Istomina, E.A. & Odintsova, T.I. Biological Diversity of Genes Encoding Wheat Defensin Homologs. Russ J Genet 59, 1310–1319 (2023). https://doi.org/10.1134/S1022795423120116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795423120116

Keywords:

Navigation