Log in

Weak Population Genetic Structure of the Eurasian Crane Grus grus L.

  • ANIMAL GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The paper presents an extended (in comparison with previous studies) analysis of the population genetic structure of a migratory wide-range species with high abundance, the Eurasian crane, Grus grus L. Using seven highly polymorphic microsatellite loci, high and very similar values of genetic diversity parameters were obtained in samples of the western (G. g. grus) and eastern (G. g. lilfordi) subspecies. Coefficients of genetic differentiation between these subspecies (FST = 0.008, GST = 0.002) were also found to be low. According to AMOVA, 99% of genetic variation of G. grus is attributed to individual levels. Using the Bayesian clustering algorithm implemented in the STRUCTURE software, no clear population genetic structuring of the species was revealed. At the same time, visualization of spatial patternts of genetic variability in the Geneland software showed the presence of a cluster of “pure” subspecies of G. g. grus and G. g. lilfordi, surrounding a cluster of individuals from the zone of intergradation of these subspecies. This result, along with the observed very low F-statistics values, may indicate subtle genetic differences between the cranes from the studied area, possibly having a mutational nature. Lower allelic richness and lack of private alleles in the eastern subspecies G. g. lilfordi suggests its relative evolutionary youth and recent origin from the eastern marginal populations of the nominative western subspecies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Prange, H. and Ilyashenko, E.I., Eurasian crane, Crane Conservation Strategy, Mirande, C.M. and Harris, J.T., Eds., Baraboo, Wisconsin: International Crane Foundation, 2019, pp. 397—423.

  2. Bird Life International, Grus grus, The IUCN Red List of Threatened Species 2016. https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T2-2692146A86219168.en.

  3. Ilyashenko, V.Yu., About the Common crane systematics, in Zhuravli Evrazii (biologiya, rasprostranenie, migratsiya, upravlenie) (Cranes of Eurasia: Biology, Distribution, Migrations, and Management), 2011, issue 4, pp. 93—103.

  4. Ilyashenko, V.Yu. and Belyalov, O.V., New subspecies of the Common crane Grus grus korelovi ssp. n. (Aves: Gruidae) from Central and Eastern Tien Shan, Russ. Ornitol. Zh., 2011, vol. 20, no. 687, pp. 1803—1811.

    Google Scholar 

  5. Ilyashenko, V.Yu., Kasabyan, M.G., and Markin, Yu.M., Morphological variation of the gray crane—Grus grus (Linnaeus, 1758) (Aves: Gruidae), Zhuravli Evrazii (biologiya, rasprostranenie, migratsiya, upravlenie) (Cranes of Eurasia: Biology, Distribution, Migrations, and Management), 2008, issue 3, pp. 50—82.

  6. Crane Conservation Strategy, Mirande, C.M. and Harris, J.T., Eds., Baraboo, Wisconsin: International Crane Foundation, 2019.

    Google Scholar 

  7. Ilyashenko, E. and Markin, Yu., Changes in the Eurasian Crane (Grus grus) staging areas distribution in the European part of Russia from 1982 to 2007, Cranes, Agriculture, and Climate Change (Proc. Int. Workshop), Baraboo, Wisconsin: International Crane Foundation, 2012, pp. 88—99.

  8. Prange, H., Distribution and migrations of the gray crane along the Western European flyway, Zhuravli Evrazii (biologiya, rasprostranenie, migratsiya, razvedenie) (Cranes of Eurasia: Biology, Distribution, Migrations, and Breeding), Moscow: Belyi Veter, 2015, issue 5, pp. 287—312.

  9. Ilyashenko, E.I., Estimated numbers of cranes (Gruiformes, Gruidae) in Northern Eurasia at the beginning of the 21st century, Zool. Zh., 2016, vol. 95, no. 8, pp. 976–980. https://doi.org/10.7868/S0044513416080043

    Article  Google Scholar 

  10. Hasegawa, O., Ishibashi, Y., and Abe, S., Isolation and characterization of microsatellite loci in the red-crowned crane Grus japonensis, Mol. Ecol., 2000, vol. 9, no. 10, pp. 1677—1678.

    Article  CAS  PubMed  Google Scholar 

  11. Jones, K.L., Henkel, J.R., Howard, J.J., et al., Isolation and characterization of 14 polymorphic microsatellite DNA loci for the endangered whoo** crane (Grus americana) and their applicability to other crane species, Conserv. Gen. Res., 2010, vol. 2, no. 1, pp. 251—254. https://doi.org/10.1007/s12686-010-9196-3

    Article  Google Scholar 

  12. Meares, K., Dawson, D., Horsburgh, G.J., et al., Characterisation of 14 blue crane Grus paradisea (Gruidae, Aves) microsatellite loci for use in detecting illegal trade, Conserv. Genet., 2008, vol. 9, pp. 1363—1367. https://doi.org/10.1007/s10592-007-9490-0

    Article  Google Scholar 

  13. Mudrik, E.A., Kashentseva, T.A., Redchuk, P.S., and Politov, D.V., Microsatellite variability data confirm low genetic differentiation of western and eastern subspecies of common crane Grus grus L. (Gruidae, Aves), Mol. Biol. (Moscow), 2015, vol. 49, no. 2, pp. 260—266. https://doi.org/10.1134/S0026893315020090

    Article  CAS  Google Scholar 

  14. Ilyashenko, E.I., Ilyashenko, V.Yu., Wikelski, M., and Cao, L., Preliminary results of the tracking of Eurasian cranes tagged in European part of Russia and Western Siberia in 2019–2021, Newsletter of the Crane Working Group of Eurasia, 2022a, no. 16, pp. 157—169.

  15. Zhang, L., Zhang, Z., Shen, F., et al., Identification and characterization of polymorphic microsatellite loci in the red-crowned crane, Genet. Mol. Res., 2015, vol. 14, no. 4, pp. 15169—15176. https://doi.org/10.4238/2015.November.25.5

    Article  CAS  PubMed  Google Scholar 

  16. Krajewski, C., Sipiorski, J.T., and Anderson, F.E., Complete mitochondrial genome sequences and the phylogeny of cranes (Gruiformes: Gruidae), Auk, 2010, vol. 127, no. 2, pp. 440–452. https://doi.org/10.1525/auk.2009.09045

    Article  Google Scholar 

  17. Lazar, I., Jr. and Lazar, I., Sr., GelAnalyzer 19.1. http://www.gelanalyzer.com.

  18. Van Oosterhout, C., Hutchinson, W.F., Wills, D.P., and Shipley, P., MICRO-CHECKER: software for identifying and correcting genoty** errors in microsatellite data, Mol. Ecol. Notes, 2004, vol. 4, no. 3, pp. 535—538. https://doi.org/10.1111/J.1471-8286.2004.00684.X

    Article  CAS  Google Scholar 

  19. Peakall, R. and Smouse, P.E., GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update, Bioinformatics, 2012, no. 28, pp. 2537—2539. https://doi.org/10.1093/bioinformatics/bts460

  20. Pritchard, J.K., Stephens, M., and Donnelly, P., Inference of population structure using multilocus genotype data, Genetics, 2000, vol. 155, no. 2, pp. 945—959. https://doi.org/10.3410/f.1015548.197423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guillot, G., Estoup, A., Mortier, F., and Cosson, J.F., A spatial statistical model for landscape genetics, Genetics, 2005, vol. 170, no. 3, pp. 1261—1280. https://doi.org/10.1534/genetics.104.033803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guillot, G., Mortier, F., and Estoup, A., Geneland: a program for landscape genetics, Mol. Ecol. Notes, 2005, vol. 5, no. 3, pp. 712—715. https://doi.org/10.1111/j.1471-8286.2005.01031.x https://doi.org/10.1111/j.1471-8286.2005.01031.x

    Article  CAS  Google Scholar 

  23. Guillot, G., Inference of structure in subdivided populations at low levels of genetic differentiation: the correlated allele frequencies model revisited, Bioinformatics, 2008, vol. 24, pp. 2222—2228. https://doi.org/10.1093/bioinformatics/btn419

    Article  CAS  PubMed  Google Scholar 

  24. Guillot, G., Renaud, S., Ledevin, R., et al., Unifying model for the analysis of phenotypic, genetic and geographic data, Syst. Biol., 2012, vol. 61, no. 6, pp. 897—911. https://doi.org/10.1093/sysbio/sys038

    Article  PubMed  Google Scholar 

  25. Guillot, G. and Santos, F., A computer program to simulate multilocus genotype data with spatially auto-correlated allele frequencies, Mol. Ecol. Res., 2009, vol. 9, no. 4, pp. 1112—1120.

    Article  CAS  Google Scholar 

  26. Guillot, G. and Santos, F., Using AFLP markers and the Geneland program for the inference of population genetic structure, Mol. Ecol. Res., 2010, vol. 10, no. 6, pp. 1082—1084. https://doi.org/10.1111/j.1755-0998.2010.02864.x

    Article  CAS  Google Scholar 

  27. Guillot, G., Santos, F., and Estoup, A., Analysing georeferenced population genetics data with Geneland: a new algorithm to deal with null alleles and a friendly graphical user interface, Bioinformatics, 2008, vol. 24, no. 11, pp. 1406—1414. https://doi.org/10.1093/bioinformatics/btn136

    Article  CAS  PubMed  Google Scholar 

  28. Guillot, G., Santos, F., and Estoup, A., Population Genetics Analysis Using R and the Geneland Program, Lyngby, Denmark: Technical University of Denmark, 2011.

    Google Scholar 

  29. Evanno, G., Regnaut, S., and Goudet, J., Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study, Mol. Ecol., 2005, vol. 14, no. 8, pp. 2611—2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  30. Kopelman, N.M., Mayzel, J., Jakobsson, M., Clumpak: a program for identifying clustering modes and packaging population structure inferences across K, Mol. Ecol. Res., 2015, vol. 15, no. 5, pp. 1179—1191. https://doi.org/10.1111/1755-0998.12387

    Article  CAS  Google Scholar 

  31. Anselin, L., Syabri, I., and Kho, Y., GeoDa: an introduction to spatial data analysis, in Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications, Berlin, 2010, pp. 73—89. https://doi.org/10.1007/978-3-642-03647-7_5

  32. Schnute, J.T., Boers, N., Haigh, R., et al., PBS Map**: Map** Fisheries Data and Spatial Analysis Tools, Fisheries and Oceans Canada. 2022. https://github.com/pbs-software/pbs-map**.

  33. R CoreTeam, R: a language and environment for statistical computing, Vienna: R Foundation for Statistical Computing, 2021. https://www.R-project.org.

  34. Meves, V., Permanent breeding sites use by cranes in Mecklenburg-West Pomerania (North-East Germany), Zhuravli Evrazii (biologiya, rasprostranenie, migratsiya, razvedenie) (Cranes of Eurasia: Biology, Distribution, Migrations, and Breeding), Moscow: Belyi Veter, 2015, issue 5, pp. 68—76.

  35. Kondrakova, K.D., Markin, Yu.M., Postel’nykh, K.A., Ilyashenko, V.Yu., Pekarski, S., Natan, R., and Ilyashenko, E.I., Movements of immature Eurasian Cranes (Grus grus) in the center of the European part of the range, Ornitologia, 2021, no. 45, pp. 75—80.

  36. Sviridova, T.V., Grinchenko, O.S., Wikelski, M., and Ilyashenko, E.I., Geographical connectivity, migration routes, and wintering grounds of the common crane in the Northern Moscow Region, Arid Ecosyst., 2023, vol. 13, no. 2, pp. 196—207. https://doi.org/10.1134/S2079096123020142

    Article  Google Scholar 

  37. Hayes, M.A., Dispersal and Population Genetic Structure in Two Flyways of Sandhill Cranes (Grus canadensis), Madison, Wisconsin: The University of Wisconsin-Madison, 2015.

    Google Scholar 

  38. Nesbitt, S.A., Schwikert, S.T., and Folk, M.J., Natal dispersal in Florida sandhill cranes, J. Wildl. Manage., 2002, vol. 66, no. 2, pp. 349—352.

    Article  Google Scholar 

  39. Haase, M., Höltje, H., Blahy, B., et al., Shallow genetic population structure in an expanding migratory bird with high breeding site fidelity, the Western Eurasian crane Grus grus grus, J. Ornithol., 2019, vol. 160, pp. 965—972. https://doi.org/10.1007/s10336-019-01688-1

    Article  Google Scholar 

  40. Mudrik, E.A., Ilyashenko, E.I., Goroshko, O.A., et al., The Demoiselle crane (Anthropoides virgo) population genetic structure in Russia, Vavilovskii Zh. Genet. Sel., 2018, vol. 22, no. 5, pp. 586—592. https://doi.org/10.18699/VJ18.398

    Article  Google Scholar 

  41. Mudrik, E.A., Goroshko, O.A., Surmach, S.G., et al., Gene pool homogeneity of western and eastern populations of the white-naped crane Antigone vipio in different flyways, Russ. J. Genet., 2022, vol. 58, no. 5, pp. 566—575. https://doi.org/10.1134/S1022795422050064

    Article  CAS  Google Scholar 

  42. Mudrik, E.A. and Politov, D.V., Molecular genetic approaches in the study and conservation of population gene pools of cranes (Gruidae, Aves), Biol. Bull. Rev., 2022, vol. 12, suppl. 1, pp. S46—S54. https://doi.org/10.1134/S2079086422070088

    Article  Google Scholar 

  43. Parau, L.G. and Wink, M., Common patterns in the molecular phylogeography of western palearctic birds: a comprehensive review, J. Ornithol., 2021, vol. 162, pp. 937—959. https://doi.org/10.1007/s10336-021-01893-x

    Article  PubMed  PubMed Central  Google Scholar 

  44. Haase, M. and Ilyashenko, V., A glimpse on mitochondrial differentiation among four currently recognized subspecies of the common crane Grus grus, Ardeola, 2012, vol. 59, no. 1, pp. 131—136. https://doi.org/10.13157/arla.59.1.2012

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank I.P. Aryulina, O.S. Grinchenko, M.V. Korepov, T.V. Sviridova, T.V. Selezneva, G.V. Nosachenko, employees of the Kirzinsky Federal Nature Reserve (Novosibirsk oblast) for the help in collecting biological material, as well as the Alexander Silberman Institute of Life Science, Hebrew University of Jerusalem (Israel), the Max Planck Institute of Animal Behavior (Germany), Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, and the University of the Chinese Academy of Sciences (China) for providing GPS-GSM transmitters, thanks to which the breeding sites of tagged Eurasian cranes were identified.

Funding

The study was supported by the Russian Science Foundation (grant no. 23-24-00613, https://rscf.ru/project/23-24-00613/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Mudrik.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

The birds were caught under the permits from regional authorities of the Federal Service for Supervision of Natural Resources.

The study was approved by the Bioethics Committee at the Vavilov Institute of General Genetics Russian Academy of Sciences (protocol no. 1 of May 18, 2023).

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Maleeva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mudrik, E.A., Markin, Y.M., Postelnykh, K.A. et al. Weak Population Genetic Structure of the Eurasian Crane Grus grus L.. Russ J Genet 59, 1333–1344 (2023). https://doi.org/10.1134/S1022795423120062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795423120062

Keywords:

Navigation