Log in

Increasing the Resistance of Wheat to Oil Pollution Using Endophytic Bacteria Bacillus subtilis

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The effect of treatment of wheat seeds with a suspension culture of cells of endophytic bacteria of the strain Bacillus subtilis 26D and lines B. subtilis 26D+n, selected for tolerance to crude oil components, on the growth and biochemical characteristics of wheat plants Triticum aestivum L. in conditions of oil pollution of the soil was studied. It has been shown that seed inoculation with the line B. subtilis 26D+n stimulated the growth of seedlings and suppressed the development of oxidative stress under conditions of exposure to oil pollution in plants in comparison with the control and plants inoculated with the strain B. subtilis 26D. Accordingly, bacteria B. subtilis 26D+n contributed to more successful growth of wheat plants on oil-contaminated soils, which can be used to stimulate the growth of plants in such areas and to return some of them to economic circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Odukoya, J., Lambert, R., and Sakrabani, R., Understanding the impacts of crude oil and its induced abiotic stresses on agrifood production: A review, Horticulturae, 2019, vol. 5, p. 47. https://doi.org/10.3390/horticulturae5020047

    Article  Google Scholar 

  2. Alotaibi, F., St-Arnaud, M., and Hijri, M., In-depth characterization of plant growth promotion potentials of selected alkanes-degrading plant growth-promoting bacterial isolates, Front. Microbiol., 2022, vol. 13, p. 863702. https://doi.org/10.3389/fmicb.2022.863702

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kanwal, M., Ullah, H., Gulzar, A., Sadiq, T., Gul, Z., Ullah, M., Sarfraz, M., Aslam, M.A., Khan, N.N., Batool, T., Maqsood, S., and Nawaz, A., Biodegradation of petroleum hydrocarbons and the factors effecting rate of biodegradation, Am. J. Biomed. Sci. Res., 2022, vol. 16, p. 6 https://doi.org/10.34297/ajbsr.2022.16.002182

    Article  Google Scholar 

  4. Da Silva Correa, H., Blum, C.T., Galvão, F., and Maraho, L.T., Effects of oil contamination on plant growth and development: a review, Environ. Sci Pollut. Res., 2022, vol. 29, p. 43501. https://doi.org/10.1007/s11356-022-19939-9

    Article  CAS  Google Scholar 

  5. Arellano, P., Tansey, K., Balzter, H., and Tellkamp, M., Plant family-specific impacts of petroleum pollution on biodiversity and leaf chlorophyll content in the amazon rainforest of Ecuador, PLoS ONE, 2017, vol. 12, p. e0169867. https://doi.org/10.1371/journal.pone.0169867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lumactud, R., Shen, S.Y., Lau, M., and Fulthorpe, R., Bacterial endophytes isolated from plants in natural oil seep soils with chronic hydrocarbon contamination, Front. Microbiol., 2016, vol. 7, p. 755. https://doi.org/10.3389/fmicb.2016.00755

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pawlik, M., Płociniczak, T., Thijs, S., Pintelon, I., Vangronsveld, J., and Piotrowska-Seget, Z., Comparison of two inoculation methods of endophytic bacteria to enhance phytodegradation efficacy of an aged petroleum hydrocarbons polluted soil, Agronomy, 2020, vol. 10, p. 1196. https://doi.org/10.3390/agronomy10081196

    Article  CAS  Google Scholar 

  8. Hwang, H.H., Chien, P.R., Huang, F.C., Yeh, P.H., Hung, S.H.W., Deng, W.L., and Huang, C.C., A plant endophytic bacterium Priestia megaterium strain BP-R2 isolated from the halophyte Bolboschoenus planiculmis enhances plant growth under salt and drought stresses, Microorganisms, 2022, vol. 10, p. 2047. https://doi.org/10.3390/microorganisms10102047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ha-Tran, D.M., Nguyen, T.T.M., Hung, S.H., Huang, E., and Huang, C.C., Roles of plant growth-promoting rhizobacteria (PGPR) in stimulating salinity stress defense in plants: A review, Int. J. Mol. Sci., 2021, vol. 2, p. 3154. https://doi.org/10.3390/ijms22063154

    Article  CAS  Google Scholar 

  10. Mohammadipanah, F. and Zamanzadeh, M., Bacterial mechanisms promoting the tolerance to drought stress in plants, in: Secondary metabolites of plant growth promoting rhizomicroorganisms, Singh, H., , Eds., Springer: Singapore, 2019, p. 185. https://doi.org/10.1007/978-981-13-5862-3_10

    Book  Google Scholar 

  11. Fadiji, A.E. and Babalola, O.O., Elucidating mechanisms of endophytes used in plant protection and other bioactivities with multifunctional prospects, Front. Bioeng. Biotechnol., 2020, vol. 8, p. 467. https://doi.org/10.3389/fbioe.2020.00467

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zakharchenko, M.V., Lyushin, M.M., and Mustafina, E.A., Metal compounds in oils from Orenburg deposits, Neftegazokhim., 2016, vol. 1, p. 61.

    Google Scholar 

  13. Workshop On Microbiology, Netrusova, A.I., Ed., Moscow: Academy, 2005.

    Google Scholar 

  14. Veselova, S.V., Burkhanova, G.F., Nuzhnaya, T.V., and Maksimov, I.V., Roles of ethylene and cytokinins in development of defense responses in Triticum aestivum plants infected with Septoria nodorum, Russ. J. Plant Physiol., 2016, vol. 63, p. 609.https://doi.org/10.1134/S1021443716050150

    Article  CAS  Google Scholar 

  15. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1972, vol. 72, p. 248. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  Google Scholar 

  16. Costa, H., Gallego, S.M., and Tomaro, M.L., Effect of UV-B radiation on antioxidant defense system in sunflower cotyledons, Plant Sci., 2002, vol. 162, p. 939.

    Article  CAS  Google Scholar 

  17. Shikhaleeva, G.N., Budnyak, A.K., Shikhaleev, I.I., and Ivashchenko, O.L., Modified method for the determination of proline in plant objects, Bull. Kharkiv Nat. Univ. Ser. Biol., 2014, vol. 21, p. 168.

    Google Scholar 

  18. Kuramshina, Z.M., Khairullin, R.M., and Smirnova, Yu.V., Varietal responsiveness of Triticum aestivum L. to inoculation with cells of endophytic strains of Bacillus subtilis, Rus. Agric. Sci., 2019, vol. 6, p. 3. https://doi.org/10.31857/S2500-2627201963-6

    Article  Google Scholar 

  19. Kuramshina, Z.M. and Khairullin, R.M., Endophytic strains of Bacillus subtilis promote drought resistance of plants, Russ. J. Plant Physiol., 2023, vol. 70 (45), p. 259. https://doi.org/10.1134/S1021443722603172

    Article  Google Scholar 

  20. Kuramshina, Z.M. and Khairullin, R.M., Improving salt stress tolerance of Triticum aestivum L. with endophytic strains of Bacillus subtilis, Russ. J. Plant Physiol., 2023, vol. 70 (53), p. 293. https://doi.org/10.1134/S1021443722603068

    Article  Google Scholar 

  21. Ziółkowska, A. and Wyszkowski, M., Toxicity of petroleum substances to microorganisms and plants, Ecol. Chem. Eng. S., 2010, vol. 17, p. 73.

    Google Scholar 

  22. da Silva Correa, H., Blum, C.T., Galvão, F., and Maranho, L.T., Effects of oil contamination on plant growth and development: a review, Environ. Sci. Pollut. Res., 2022, vol. 29, p. 43501. https://doi.org/10.1007/s11356-022-19939-9

    Article  CAS  Google Scholar 

  23. Hidalgo, K.J., Sierra-Garcia, I.N., Dellagnezze, B.M., and de Oliveira, V.M., Metagenomic insights into the mechanisms for biodegradation of polycyclic aromatic hydrocarbons in the oil supply chain, Front. Microbiol., 2020, vol. 11, p. 561506. https://doi.org/10.3389/fmicb.2020.561506

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pawlik, M., Cania, B., Thijs, S., Vangronsveld, J., and Piotrowska-Seget, Z., Hydrocarbon degradation potential and plant growth-promoting activity of culturable endophytic bacteria of Lotus corniculatus and Oenothera biennis from a long-term polluted site, Environ. Sci. Pollut. Res., 2017, vol. 24, p. 19640. https://doi.org/10.1007/s11356-017-9496-1

    Article  CAS  Google Scholar 

  25. Antoszewski, M., Mierek-Adamska, A., and Dąbrowska, G.B., The Importance of microorganisms for sustainable agriculture-a review, Metabolites, 2022, vol. 12, p. 1100. https://doi.org/10.3390/metabo12111100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mitter, E. R.K., Kataoka, R., de Freitas, J. R., and Germida, J.J., Potential use of endophytic root bacteria and host plants to degrade hydrocarbons, Int. J. Phytoremediation, 2019, vol. 21, p. 9. https://doi.org/10.1080/15226514.2019.1583637

    Article  CAS  Google Scholar 

  27. Liu, Y., Morelli, M., Koskimäki, J.J., Qin, S., Zhu, Y.-H., Zhang, X.X., Editorial: Role of endophytic bacteria in improving plant stress resistance, Front. Plant Sci., 2022, vol. 13, p. 1106701. https://doi.org/10.3389/fpls.2022.1106701

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gkorezis, P., Daghio, M., Franzetti, A., Van Hamme, J.D., Sillen, W., and Vangronsveld, J., The interaction between plants and bacteria in the remediation of petroleum hydrocarbons: An environmental perspective, Front. Microbiol., 2016, vol. 7, p. 1836. https://doi.org/10.3389/fmicb.2016.01836

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kuramshina, Z.M., Smirnova, Y.V., and Khairullin, R.M., Increasing Triticum aestivum tolerance to cadmium stress through endophytic strains of Bacillus subtilis, Russ. J. Plant. Physiol., 2016, vol. 63, p. 636. https://doi.org/10.1134/S1021443716050083

    Article  CAS  Google Scholar 

  30. Marchut‑Mikolajczyk, O., Drożdżyński, P., Pietrzyk1, D., and Antczak, T., Biosurfactant production and hydrocarbon degradation activity of endophytic bacteria isolated from Chelidonium majus L., Microb. Cell Fact., 2018, vol. 17, p. 171. https://doi.org/10.1186/s12934-018-1017-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Peele, A., Vekateswarulu, T.C. Tammineedi, J., Kanumuri, L., Ravuru, B.K., Dirisala, V.R., Kodali, V.P., Role of biosurfactants in bioremediation of oil pollution—a review, Petroleum, 2018, vol. 4, p. 241.

    Article  Google Scholar 

  32. Cherepanova, E.A., Galyautdinov, I.V., Burkhanova, G.F., and Maksimov, I.V., Isolation and identification of lipopeptides of Bacillus subtilis 26D strain, Prikl. Biokhim. Mikrobiol., 2021, vol. 57, p. 496. https://doi.org/10.31857/S0555109921050032

    Article  Google Scholar 

  33. Maksimov, I.V., Singh, B.P., Cherepanova, E.A. Burkhanova, G.F., and Khairullin, R.M., Prospects and applications of lipopeptide-producing bacteria for plant protection (Review), Appl. Biochem. Microbiol., 2020, vol. 56, p. 15. https://doi.org/10.1134/S0003683820010135

    Article  CAS  Google Scholar 

  34. Sorokan, A., Veselova, S., Benkovskaya, G., and Maksimov, I., Endophytic strain Bacillus subtilis 26D increases levels of phytohormones and repairs growth of potato plants after colorado potato beetle damage, Plants, 2021, vol. 10, p. 923. https://doi.org/10.3390/plants10050923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nafikova, A.R., Surina, O.B., Khairullin, R.M., and Maksimov, I.V., Influence of metabolites of Bacillus subtilis strains 26D and 11VM on the growth of seedlings and calli of wheat, Agrokhimiya, 2018, vol. 5, p. 39. https://doi.org/10.7868/s000218811805006x

    Article  Google Scholar 

  36. Le Mire, G., Siah, A., Brisset, M.-N., Gaucher, M., Deleu, M., Jijakli, M.H., Surfactin protects wheat against Zymoseptoria tritici and activates both salicylic acid- and jasmonic acid-dependent defense responses, Agriculture, 2018, vol. 8, p. 11. https://doi.org/10.3390/agriculture8010011

    Article  CAS  Google Scholar 

  37. Pršic, J. and Ongena, M., Elicitors of plant immunity triggered by beneficial bacteria, Front. Plant Sci., 2022, vol. 11, p. 594530. https://doi.org/10.3389/fpls.2020.594530

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. M. Kuramshina.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

COMPLIANCE WITH ETHICAL STANDARDS STATEMENT ON THE WELFARE OF ANIMALS

This article does not contain any studies involving humans and animals as research subjects.

Additional information

Abbreviations: PO, peroxidase; CAT, catalase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuramshina, Z.M., Sattarova, L.R. & Maksimov, I.V. Increasing the Resistance of Wheat to Oil Pollution Using Endophytic Bacteria Bacillus subtilis. Russ J Plant Physiol 70, 124 (2023). https://doi.org/10.1134/S1021443723700188

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443723700188

Keywords:

Navigation