Log in

Endophytic Strains of Bacillus subtilis Promote Drought Resistance of Plants

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Effects of drought on plants of Triticum aestivum L., Brоmopsis inеrmis L., Pisum sativum L., and Zea mays L. inoculated with endophytic strains of Bacillus subtilis bacteria were studied. Presowing treatment of seeds with these bacteria was found to boost plant resistance to water deficit, stimulate their growth, and suppress oxidative stress. Based on the ability of the tested strains to cause antistress effect and activate the antioxidant system, it is concluded that plant treatments with them may favor growing of agricultural crops under drought conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Bijalwan, P., Sharma, M., and Kaushik, P., Review of the effects of drought stress on plants: a systematic approach, Preprints, 2022, p. 2022020014. https://doi.org/10.20944/preprints202202.0014.v1

    Book  Google Scholar 

  2. Wu, C. and Wang, T., Evaluating cumulative drought effect on global vegetation photosynthesis using numerous GPP products, Front. Environ. Sci., 2022, vol. 10, p. 908875. https://doi.org/10.3389/fenvs.2022.908875

    Article  Google Scholar 

  3. Vidal, C., González, F., Santander, C., Pérez, R., Gallardo, V., Santos, C., Aponte, H., Ruiz, A., and Cornejo, P., Management of rhizosphere microbiota and plant production under drought stress: A comprehensive review, Plants, 2022, vol. 11, p. 2437. https://doi.org/10.3390/plants11182437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Verma, H., Kumar, D., Kumar, V., Kumari, M., Singh, S.K., Sharma, V.K., Droby, S., Santoyo, G., White, J.F., and Kumar, A., The potential application of endophytes in management of stress from drought and salinity in crop plants, Microorganisms, 2021, vol. 9, p. 1729. https://doi.org/10.3390/microorganisms9081729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Poudel, M., Mendes, R., Costa, L.A.S., Bueno, C.G., Meng, Y., Folimonova, S.Y., Garrett, KA., and Martins, S.J., The role of plant-associated bacteria, fungi, and viruses in drought stress mitigation, Front. Microbiol., 2021, vol. 12, p. 743512. https://doi.org/10.3389/fmicb.2021.743512

    Article  PubMed  PubMed Central  Google Scholar 

  6. Abideen, Z., Cardinale, M., Zulfiqar, F., Koyro, H.-W., Rasool, S.G., Hessini, K., Darbali, W., Zhao, F., and Siddique, K.H.M., Seed endophyte bacteria enhance drought stress tolerance in Hordeum vulgare by regulating, physiological characteristics, antioxidants and minerals uptake, Front. Plant Sci., 2022, vol. 3, p. 980046. https://doi.org/10.3389/fpls.2022.98004

    Article  Google Scholar 

  7. Verma, H., Kumar, D., Kumar, V., Kumari, M., Singh, S.K., Sharma, V.K., Droby, S., Santoyo, G., White, J.F., and Kumar, A., The potential application of endophytes in management of stress from drought and salinity in crop plants, Microorganisms, 2021, vol. 9, p. 1729. https://doi.org/10.3390/microorganisms9081729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fadiji, A.E., Santoyo, G., Yadav, A.N., and Babalola, O.O., Efforts towards overcoming drought stress in crops: Revisiting the mechanisms employed by plant growth-promoting bacteria, Front. Microbiol., 2022, vol. 13, p. 962427. https://doi.org/10.3389/fmicb.2022.96242

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bezrukova, M.V., Lubyanova, A.R., and Fatkhutdinova, R.A., The involvement of wheat and common bean lectins in the control of cell division in the root apical meristems of various plant species, Rus. J. Plant Phys., 2011, vol. 58, p. 174.

    Article  CAS  Google Scholar 

  10. GOST (State Standard) P 53764-2009: Soil Quality. Determination of Soil Moisture Content as a Volume Fraction Using Soil Sampling Tubes. Gravimetric Method, 2010.

  11. Khairullin, R.M., Yarullina, L.G., Troshina, N.B., and Akhmetova, I.E., Chitooligosaccharide-induced activation of o-phenylenediamine oxidation by wheat seedlings in the presence of oxalic acid, Biochem. (Moscow), 2001, vol. 66, p. 286.

    Article  CAS  Google Scholar 

  12. Korolyuk, M.A., Ivanova, L.I., Mayorova, I.G., and Tokarev, V.E., Metod opredeleniya aktivnosti katalazy, Lab. delo, 1988, vol. 1, p. 16.

    Google Scholar 

  13. Costa, H., Gallego, S.M., and Tomaro, M.L., Effect of UV-B radiation on antioxidant defense system in sunflower cotyledons, Plant Sci., 2002, vol. 162, p. 939.

    Article  CAS  Google Scholar 

  14. Shikhaleeva, G.N., Budnyak, A.K., Shikhaleev, I.I., and Ivashchenko, O.L., Modified method for the determination of proline in plant objects, Vis. Kharkiv. Nat. Univ. Karazina. Ser.: Biol., 2014, vol. 21, no. 1112, p. 168.

  15. Melent’ev, A.I., Aerobnye sporoobrazuyushchie bakterii Bacillus Cohc v agroekosistemakh (Aerobic Spore-Forming Bacteria Bacillus Cohs in Agroecosystems), Moscow: Nauka, 2007.

    Google Scholar 

  16. Egorshina, A.A., Luk’yantsev, M.A., Khairullin, R.M., and Sakhabutdinova, A.R., Involvement of phytohormones in the development of interaction between wheat seedlings and endophytic Bacillus subtilis strain 11BM, Rus. J. Plant Phys., 2012, vol. 59, p. 134.

    Article  CAS  Google Scholar 

  17. Bogati, K. and Walczak, M., The Impact of Drought Stress on Soil Microbial Community, Enzyme Activities and Plants, Agronomy, 2022, vol. 12, p. 189. https://doi.org/10.3390/agronomy12010189

    Article  CAS  Google Scholar 

  18. Kuramshina, Z.M., Smirnova, Yu.V., and Khayrullin, R.M., Species responsiveness of agricultural crops on inoculation of seeds with cells of endophytic bacteria B. subtilis, Nauchnaya Zhizn’, 2019, vol. 14, p. 279. https://doi.org/10.26088/INOB.2019.91.29682

  19. Kuramshina, Z.M., Khayrullin, R.M., and Smirnova, Yu.V., Varietal responsiveness Triticum aestivum L. for inoculation with cells of endophytic strains Vacillus subtilis, Ross. Sel’skokhoz. Nauka, 2019, vol. 6, p. 3. https://doi.org/10.31857/S2500-2627201963-6

  20. Abdelaal, K., AlKahtani, M., Attia, K., Hafez, Y., Király, L., and Künstler, A., The role of plant growth-promoting bacteria in alleviating the adverse effects of drought on plants, Biology, 2021, vol. 10, p. 520. https://doi.org/10.3390/biology10060520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ebrahimi, M., Zamani, G.R., and Alizadeh, Z., Antioxidant activity: a strategy for alleviating the effects of drought on Calendula officinalis L., Eur. J. Med. Plants, 2016, vol. 15, p. 1.

    Article  Google Scholar 

  22. Alharbi, K., Rashwan, E., Hafez, E., Omara, A.E.-D., Mohamed, H.H., and Alshaal, T., Potassium humate and plant growth-promoting microbes jointly mitigate water deficit stress in soybean cultivated in salt-affected soil, Plants, 2022, vol. 11, p. 3016. https://doi.org/10.3390/plants11223016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cruz, C., Cardoso, P., Santos, J., Matos, D., and Figueira, E., Bioprospecting soil bacteria from arid zones to increase plant tolerance to drought: growth and biochemical status of maize inoculated with plant growth-promoting bacteria isolated from sal island, cape verde, Plants, 2022, vol. 11, p. 2912. https://doi.org/10.3390/plants11212912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang, L., Zhang, W., Li, Q., Cui, R., Wang, Z., Wang, Y., Zhang, Y.-Z., Ding, W., Shen, X., Deciphering the root endosphere microbiome of the desert plant Alhagi sparsifolia for drought resistance-promoting bacteria, Appl. Environ. Microbiol., 2020, vol. 86, p. e02863-19. https://doi.org/10.1128/AEM.02863-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. M. Kuramshina.

Ethics declarations

This article does not contain any work conducted on animal or human participants. The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Aver’yanov

Abbreviations: AWHC—available water holding capacity; IAA— indole acetic acid; MDA—malonic dialdehyde; PGPB—plant growth-promoting bacteria; ROS—reactive oxygen species.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuramshina, Z.M., Khairullin, R.M. Endophytic Strains of Bacillus subtilis Promote Drought Resistance of Plants. Russ J Plant Physiol 70, 45 (2023). https://doi.org/10.1134/S1021443722603172

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722603172

Keywords:

Navigation