Log in

Trans-Factor PTF1 Participates in the Response to Salinity but Does Not Regulate Expression of the psbD Gene in Arabidopsis thaliana

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The existing data on the role of PTF1/TCP13 belonging to the TCP family of transcription factors in regulating expression of a psbD plastid gene encoding a D2 protein of PSII are controversial. To analyze biological functions of PTF1/TCP13, transformed plants expressing PTF1/TCP13 under a β-estradiol-inducible promoter were used. PTF1/TCP13 overexpression did not provide the expected increase in the accumulation of psbD transcripts transcribed from BLRP (Blue Light Responsive Promoter), though their level significantly increased under exposure to light or abscisic acid (ABA). PTF1/TCP13 was up-regulated by ABA; moreover, genes of the canonic pathway of the ABA signal transduction were involved in the regulation of PTF1/TCP13 expression. In addition, PTF1/TCP13 was induced in response to salt stress However, in the overexpressing line, salt tolerance and expression of salt stress markers, as well as a number of genes for the synthesis and signaling of ABA, were reduced compared to plants with the normal level of expression of this transcription factor, that is, PTF1/TCP13 acted as a negative regulator of salt stress Thus, PTF1 does not belong to plastid transcription factors. Nevertheless, it represents one of the components of the ABA-dependent regulatory chain capable of modifying expression of nuclear and chloroplast genes in response to changes in homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Wagner, R. and Pfannschmidt, T., Eukaryotic transcription factors in plastids—bioinformatic assessment and implications for the evolution of gene expression machineries in plants, Gene, 2006, vol. 381, p. 62. https://doi.org/10.1016/j.gene.2006.06.022

    Article  CAS  PubMed  Google Scholar 

  2. Schwacke, R., Fischer, K., Ketelsen, B., Krupinska, K., and Krause, K., Comparative survey of plastid and mitochondrial targeting properties of transcription factors in Arabidopsis and rice, Mol. Genet. Genomics, 2007, vol. 277, p. 631. https://doi.org/10.1007/s00438-007-0214-4

    Article  CAS  PubMed  Google Scholar 

  3. Baba, K., Nakano, T., Yamagishi, K., and Yoshida, S., Involvement of a nuclear-encoded basic helix-loop-helix protein in transcription of the light-responsive promoter of psbD, Plant Physiol., 2001, vol. 125, p. 595. https://doi.org/10.1104/pp.125.2.595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kodama, Y., Plastidic proteins containing motifs of nuclear transcription factors, Plant Biotech., 2007, vol. 24, p. 165. https://doi.org/10.5511/plantbiotechnology.24.165

    Article  CAS  Google Scholar 

  5. Kodama, Y. and Sano, H., A comparative analysis of basic helix-loop-helix proteins, AtPTF1 and NtWIN4, with reference to plastid localization, Plant Biotech., 2007, vol. 24, p. 335. https://doi.org/10.5511/plantbiotechnology.24.335

    Article  CAS  Google Scholar 

  6. Yamburenko, M.V., Zubo, Y.O., and Börner, T., Abscisic acid affects transcription of chloroplast genes via protein phosphatase 2C-dependent activation of nuclear genes: repression by guanosine-3-′5′-bisdiphosphate and activation by sigma factor 5, Plant J., 2015. vol. 82, p. 1030. https://doi.org/10.1111/tpj.12876

    Article  CAS  PubMed  Google Scholar 

  7. Zabala, M.T., Littlejohn, G., Jayaraman, S., Studholme, D., Bailey, T., Lawson, T., Tillich, M., Licht, D., Bölter, B., Delfino, L., Truman, W., Mansfield, J., Smirnoff, N., and Grant, M., Chloroplasts play a central role in plant defence and are targeted by pathogen effectors, Nat. Plants, 2015, vol. 1, p. 15074. https://doi.org/10.1038/NPLANTS.2015.74

    Article  Google Scholar 

  8. Hur, Y.-S., Kim, J., Kim, S., Son, O., Kim, W.-Y., Kim, G.-T., Takagi, M.O., and Choong-Ill Cheon, C., Identification of TCP13 as an upstream regulator of ATHB12 during leaf development genes, Genes, 2019, vol. 10, p. 644. https://doi.org/10.3390/genes10090644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Urano, K., Maruyama, K., Koyama, T., Gonzalez, N., Kazuko, D.I., Shinozaki, Y., and Shinozaki, K., CIN-like TCP13 is essential for plant growth regulation under dehydration stress, Plant Mol. Biol., 2022, vol. 108, p. 257. https://doi.org/10.1007/s11103-021-01238-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Coego, A., Brizuela, E., Castillejo, P., Ruíz, S., Koncz, C., Pozo, J.C., Piñeiro, M., Jarillo, J.A., Paz-Ares, J., and León, J., The TRANSPLANTA collection of Arabidopsis lines: a resource for functional analysis of transcription factors based on their conditional overexpression, Plant J., 2014, vol. 77, p. 944. https://doi.org/10.1111/tpj.12443

  11. Danilova, M.N., Kudryakova, N.V., Doroshenko, A.S., Zabrodin, D.A., Rakhmankulova, Z.F., Oelmüller, R., and Kusnetsov, V.V., Opposite roles of the Arabidopsis cytokinin receptors AHK2 and AHK3 in the expression of plastid genes and genes for the plastid transcriptional machinery during senescence, Plant Mol. Biol., 2017, vol. 93, p. 533. https://doi.org/10.1007/s11103-016-0580-6

    Article  CAS  PubMed  Google Scholar 

  12. Belbin, F E., Noordally, Z.B., Wetherill, S.J., Atkins, K.A., Franklin, K.A., and Dodd, A.N., Integration of light and circadian signals that regulate chloroplast transcription by a nuclear-encoded sigma factor, New Phytol., 2017, vol. 213, p. 727. https://doi.org/10.1111/nph.14176

    Article  CAS  PubMed  Google Scholar 

  13. Bates, L.S., Waldren, R.P., and Teare, I.D., Rapid determination of free proline for water-stress studies, Plant Soil., 1973, vol. 39, p. 205.

    Article  CAS  Google Scholar 

  14. Heath, L.R. and Packer, L., Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation, Arch. Biochem. Biophys., 1968, vol. 125, p. 189.

    Article  CAS  PubMed  Google Scholar 

  15. Nishiyama, R., Watanabe, Y., Fujita, Y., Le, D.T., K-ojima, M., Werner, T., Vankova, R., Yamaguchi-S-hinozaki, K., Shinozaki, K., Kakimoto, T., Sakakibara, H., Schmülling, T., and Tran, L.P., Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis, Plant Cell, 2011, vol. 23, p. 2169. https://doi.org/10.1105/tpc.111.087395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Miyakawa, T., Fujita, Y., Yamaguchi-Shinozaki, K., and Tanokura, M., Structure and function of abscisic acid receptors, Trends Plant Sci., 2013, vol. 18, p. 259. https://doi.org/10.1016/j.tplants.2012.11.002

    Article  CAS  PubMed  Google Scholar 

  17. Krupinska, K., Blanco, N.E., Oetke, S., and Zottini, M., Genome communication in plants mediated by organelle–nucleus-located proteins, Philos. Trans. R. Soc., 2020, vol. 375, p. 20190397. https://doi.org/10.1098/rstb.2019.0397

  18. Ding, S., Zhang, Y., Hu, Z., Huang, X., Zhang, B., Lu, Q., Wang, Y., and Lu, C., mTERF5 acts as a transcriptional pausing factor to positively regulate transcription of chloroplast psbEFLJ, Mol. Plant, 2019, vol. 12, p. 1259. https://doi.org/10.1016/j.molp.2019.05.007

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, Y., Cui, Y.L., Zhang, X.L., Yu, Q.B., Wang, X., Yuan, X.B., Qin, X.M., He, X.F., Huang, C., and Yang, Z.N., A nuclear-encoded protein, mTERF6, mediates transcription termination of rpoA polycistron for plastid-encoded RNA polymerase-dependent chloroplast gene expression and chloroplast development, Sci. Rep., 2018, vol. 8, p. 11929. https://doi.org/10.1038/s41598-018-30166-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tsunoyama, Y., Ishizaki, Y., Morikawa, K., Kobori, M., Nakahira, Y., Takeba, G., Toyoshima, Y., and Shiina, T., Blue light-induced transcription of plastid-encoded psbD gene is mediated by a nuclear-encoded transcription initiation factor, AtSig5, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, p. 3304. https://doi.org/10.1073/pnas.0308362101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lerbs-Mache, S., Function of plastid sigma factors in higher plants: Regulation of gene expression or just preservation of constitutive transcription?, Plant Mol. Biol., 2011, vol. 76, p. 235. https://doi.org/10.1007/s11103-010-9714-4

    Article  CAS  PubMed  Google Scholar 

  22. Cackett, L., Cannistraci, C.V., Meier, S., Ferrandi, P., Pěnčík, A., Gehring, C., Novák, O., Ingle, R.A., and Donaldson, L., Salt-specific gene expression reveals elevated auxin levels in Arabidopsis thaliana plants grown under saline conditions, Front. Plant Sci., 2022, vol. 13, p. 804716. https://doi.org/10.3389/fpls.2022.804716

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Science Foundation (project no. 20-14-00065). The data shown in Table 2 were obtained with the support of the Ministry of Science and Higher Education of Russian Federation (State Contract no. 121040800153-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Kudryakova.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

STATEMENT ON THE WELFARE OF ANIMALS

This article does not contain any studies with animals performed by any of the authors.

Additional information

Translated by N. Statsyuk

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreeva, A.A., Bychkov, I.A., Kudryakova, N.V. et al. Trans-Factor PTF1 Participates in the Response to Salinity but Does Not Regulate Expression of the psbD Gene in Arabidopsis thaliana. Russ J Plant Physiol 70, 8 (2023). https://doi.org/10.1134/S1021443722602336

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722602336

Keywords:

Navigation