Log in

Insight into the Structure of Asphaltene after Its Disaggregation by Chemical Processing

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

In order to understand the structure of asphaltene after its disaggregating by chemical processing, a comprehensive study for exploring the structural changes of asphaltene after acylation as a case of chemical processing was conducted. Functional groups, crystal parameters, hydrogen types, and micromorphology of acylated asphaltenes were analyzed by FT-IR, XPS, XRD, 1H NMR, SEM and IFM (inverted fluorescence microscope) methods. Additionally, fluorescence spectroscopy methods were performed to analyze the effect of acylation on the aggregation ability of asphaltene. Experimental results indicated that the C=O double bond was enhanced and the content of O–C=O was increased on the surface of acylated asphaltene. The number of stacking layers and the aggregate size of asphaltene decreased obviously after acylation. Fluorescence spectral analysis showed that the critical aggregation concentration of acylated asphaltenes increased compared to the raw asphaltenes. These results indicate that acylation reaction can disaggregate asphaltenes and hinder their re-aggregation in a solution. The disaggregation effect of asphaltene acylation can be attributed to the weakening of a hydrogen bonding and enhancement of a steric hindrance in the asphaltene molecule. This study provided the further understanding of the structural changes of asphaltene after the chemical treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Lababidi, H.M.S., Sabti, H.M., and AlHumaidan, F.S., Fuel, 2014, vol. 117, pp. 59‒67. https://doi.org/10.1016/j.fuel.2013.09.048

    Article  CAS  Google Scholar 

  2. Zuo, P., Qu, S., and Shen, W., J. Energy Chem., 2019, vol. 34, pp. 186‒207. https://doi.org/10.1016/j.jechem.2018.10.004

    Article  Google Scholar 

  3. Silva, H.S., Sodero, A.C.R., Bouyssiere, B., Carrier, H., Korb, J.P., Alfarra, A., Vallverdu, G., Begue, D., and Baraille, I., Energy Fuels, 2016, vol. 30, no. 7, pp. 5656‒5664. https://doi.org/10.1021/acs.energyfuels.6b01170

    Article  CAS  Google Scholar 

  4. Nguyen, N.T., Kang, K.H., Lee, C.W., Kim, G.T., Park, S., and Park, Y.K., Fuel, 2019, vol. 235, pp. 677‒686. https://doi.org/10.1016/j.fuel.2018.08.035

    Article  CAS  Google Scholar 

  5. Trejo, F., Centeno, G., and Ancheyta, J., Fuel, 2004, vol. 83, no. 16, pp. 2169‒2175. https://doi.org/10.1016/j.fuel.2004.06.008

    Article  CAS  Google Scholar 

  6. Chen, Z., Zhang, L., Zhao, S., Shi, Q., and Xu, C., in Structure and Modeling of Complex Petroleum Mixtures (Structure and Bonding), Xu, C. and Shi, Q., Eds., Springer International Publishing, 2016, vol. 168, pp. 1‒38. https://doi.org/10.1007/978-3-319-32321-3

  7. Wang, H., Xu, H., Jia, W., Liu, J., and Ren, S., Energy Fuels, 2017, vol. 31, no. 3, pp. 2488‒2495. https://doi.org/10.1021/acs.energyfuels.6b02738

    Article  CAS  Google Scholar 

  8. Hemmati-Sarapardeh, A., Dabir, B., Ahmadi, M., Mohammadi, A.H., and Husein, M.M., J. Mol. Liq., 2018, vol. 264, pp. 410‒424. https://doi.org/10.1016/j.molliq.2018.04.061

    Article  CAS  Google Scholar 

  9. Shahsavar, N., Riazi, M., and Malayeri, M.R., J. Petrol. Sci. Eng., 2020, vol. 191, ID 107207. https://doi.org/10.1016/j.petrol.2020.107207

  10. Campen, S., Moorhouse, S. J., and Wong, J.S.S., J. Petrol. Sci. Eng., 2020, vol. 184, ID 106502. https://doi.org/10.1016/j.petrol.2019.106502

  11. Li, X., Guo, Y., Sun, Q., Lan, W., Liu, A., and Guo, X., J. Petrol. Sci. Eng., 2018, vol. 162, pp. 333‒340. https://doi.org/10.1016/j.petrol.2017.12.031

    Article  CAS  Google Scholar 

  12. Paridar, S., Nazer, A.R.S., and Karimi, Y., J. Petrol. Sci. Eng., 2018, vol. 163, pp. 570‒575. https://doi.org/10.1016/j.petrol.2018.01.013

    Article  CAS  Google Scholar 

  13. Ghaffar, A.M.A., Kabel, K.I., Farag, R.K., Maysour, N.E., and Zahran, M.A., Res. Chem. Intermed., 2015, vol. 41, no. 1, pp. 443‒455. https://doi.org/10.1007/s11164-013-1243-8

    Article  CAS  Google Scholar 

  14. Soulgani, B.S., Reisi, F., and Norouzi, F., Pet. Sci., 2020, vol. 17, no. 02, pp. 457‒466. https://doi.org/10.1007/s12182-019-00383-3

    Article  CAS  Google Scholar 

  15. Mohammadi, S., Rashidi, F., Mousavi-Dehghani, S.A., and Ghazanfari, M.H., Can. J. Chem. Eng., 2016, vol. 94, no. 9, pp. 1820‒1829. https://doi.org/10.1002/cjce.22555

    Article  CAS  Google Scholar 

  16. Haji-Akbari, N., Teeraphapkul, P., and Fogler, H.S., Energy Fuels, 2014, vol. 28, no. 2, pp. 909‒919. https://doi.org/10.1021/ef4021125

    Article  CAS  Google Scholar 

  17. Ding, X., Wei, S., Bian, H., Zhu, L., and **a, D., Energy Fuels, 2021, vol. 35, no. 15, pp. 11848‒11857. https://doi.org/10.1021/acs.energyfuels.1c00652

    Article  CAS  Google Scholar 

  18. Shedid, S.A., J. Petrol. Sci. Eng., 2004, vol. 42, no. 1, pp. 57‒70. https://doi.org/10.1016/j.petrol.2003.11.001

    Article  CAS  Google Scholar 

  19. Salehzadeh, M., Akherati, A., Ameli, F., and Dabir, B., Can. J. Chem. Eng., 2016, vol. 94, no. 11, pp. 2202‒2209. https://doi.org/10.1002/cjce.22593

    Article  CAS  Google Scholar 

  20. Larichev, Y.V., Nartova, A., and Martyanov, O., Adsorp. Sci. Technol., 2016, vol. 34, nos. 2‒3, pp. 244‒257. https://doi.org/10.1177/0263617415623440

    Article  CAS  Google Scholar 

  21. Ilyin, S., Arinina, M., Polyakova, M., Bondarenko, G., Konstantinov, I., Kulichikhin, V., and Malkin, A., J. Pet. Sci. Eng., 2016, vol. 147, pp. 211‒217. https://doi.org/10.1016/j.petrol.2016.06.020

  22. Ignatenko, V.Y., Kostina, Y.V., Antonov, S.V., and Ilyin, S.O., Russ. J. Appl. Chem., 2018, vol. 91, no. 11, pp. 1835‒1840. https://doi.org/10.1134/S1070427218110149

  23. Santos Silva, H., Alfarra, A., Vallverdu, G., Begue, D., Bouyssiere, B., and Baraille, I., Pet. Sci., 2019, vol. 16, no. 3, pp. 669‒684. https://doi.org/10.1007/s12182-019-0321-y

    Article  CAS  Google Scholar 

  24. Tirjoo, A., Bayati, B., Rezaei, H., and Rahmati, M., J. Petrol. Sci. Eng., 2019, vol. 177, pp. 392‒402. https://doi.org/10.1016/j.petrol.2019.02.041

    Article  CAS  Google Scholar 

  25. Khalaf, M.H. and Mansoori, G.A., J. Petrol. Sci. Eng., 2018, vol. 162, pp. 244‒250. https://doi.org/10.1016/j.petrol.2017.12.045

    Article  CAS  Google Scholar 

  26. Sedghi, M., Goual, L., Welch, W., and Kubelka, J., J. Phys. Chem. B, 2013, vol. 117, no. 18, pp. 5765‒5776. https://doi.org/10.1021/jp401584u

    Article  CAS  PubMed  Google Scholar 

  27. Desando, M.A. and Ripmeester, J.A., Fuel, 2002, vol. 81, no. 10, pp. 1305‒1319. https://doi.org/10.1016/S0016-2361(02)00040-6

    Article  CAS  Google Scholar 

  28. Bai, Y., Sui, H., Liu, X., He, L., Li, X., and Thormann, E., Fuel, 2019, vol. 240, pp. 252‒261. https://doi.org/10.1016/j.fuel.2018.11.135

    Article  CAS  Google Scholar 

  29. Rashid, Z., Wilfred, C.D., Gnanasundaram, N, Arunagiri, A., and Murugesan, T., J. Petrol. Sci. Eng., 2019, vol. 176, pp. 249‒268. https://doi.org/10.1016/j.petrol.2019.01.004

    Article  CAS  Google Scholar 

  30. Gould, K.A., Fuel, 1978, vol. 57, no. 12, pp. 756‒762. https://doi.org/10.1016/0016-2361(78)90134-5

    Article  CAS  Google Scholar 

  31. Sakanishi, K., Yamashita, N., Whitehurst, D.D., and Mochida, I., Catal. Today, 1998, vol. 43, nos. 3‒4, pp. 241‒247. https://doi.org/10.1016/S0920-5861(98)00153-9

    Article  CAS  Google Scholar 

  32. Takanohashi, T., Sato, S., Saito, I., and Tanaka, R., Energy Fuels, 2003, vol. 17, no. 1, pp. 135‒139. https://doi.org/10.1021/ef0201275

    Article  CAS  Google Scholar 

  33. Cai, X., Long, J., Ren, Q., Dong, M., Hou, H., Wang, W., Acta Petrolei Sinica (Petroleum Processing Section), 2020, vol. 36, no. 5, pp. 889–898. https://doi.org/10.3969/j.issn.1001-8719.2020.05.001

    Article  CAS  Google Scholar 

  34. Juyal, P., Merino-Garcia, D., and Andersen, S.I., Energy Fuels, 2005, vol. 19, no. 4, pp. 1272‒1281. https://doi.org/10.1021/ef050012b

    Article  CAS  Google Scholar 

  35. Bian, H., Kan, A., Yao, Z., Duan, Z., Zhang, H., Zhang, S., Zhu, L., and **a, D., J. Phys. Chem. C, 2019, vol. 123, no. 49, pp. 29543‒29555. https://doi.org/10.1021/acs.jpcc.9b07695

    Article  CAS  Google Scholar 

  36. Chacon-Patino, M.L., Rowland, S.M., and Rodgers, R.P., Energy Fuels, 2017, vol. 31, no. 12, pp. 13509‒13518. https://doi.org/10.1021/acs.energyfuels.7b02873

    Article  CAS  Google Scholar 

  37. Moschopedis, S.E. and Speight, J.G., Fuel, 1976, vol. 55, no. 4, pp. 334‒336. https://doi.org/10.1016/0016-2361(76)90035-1

    Article  CAS  Google Scholar 

  38. Bassilios, H.F., Salem, A.Y., and Anous, M.T., Bull. Soc. Chim. Belg., 2015, vol. 81, no. 8, pp. 679‒682. https://doi.org/10.1002/bscb.19660750903

    Article  Google Scholar 

  39. Baddeley, G., J. Chem. Soc., 1949, pp. S99‒S103. https://doi.org/10.1039/JR9490000S99

  40. Ilyin, S.O., Ignatenko, V.X., Kostyuk, A.V., Levin, I.S., and Bondarenko, G.N., J. Pet. Sci. Eng., 2022, vol. 208, ID 10932. https://doi.org/10.1016/j.petrol.2021.109329

  41. AlHumaidan, F.S., Hauser, A., Rana, M.S., Lababidi, H.M.S., and Behbehani, M., Fuel, 2015, vol. 150, pp. 558‒564. https://doi.org/10.1016/j.fuel.2015.02.076

    Article  CAS  Google Scholar 

  42. Bouhadda, Y., Bormann, D., Sheu, E., Bendedouch, D., Krallafa, A., and Daaou, M., Fuel, 2007, vol. 86, nos. 12‒13, pp. 1855‒1864. https://doi.org/10.1016/j.fuel.2006.12.006

    Article  CAS  Google Scholar 

  43. Kiani, S., Jones, D.R., Shirin, A.S., and Barron, A.R., J. Colloid Interface Sci., 2020, vol. 571, pp. 307‒317. https://doi.org/10.1016/j.jcis.2020.03.018

    Article  CAS  PubMed  Google Scholar 

  44. Wang, Y., Yi, H., Liang, P., Chai, C., Yan, C., and Zhou, S., Appl. Sci., 2022, vol. 12, ID 7304. https://doi.org/10.3390/app12147304

  45. Ashoori, S., Jamialahmadi, M., Muller, S.H., Fathi, M., Neshaghi, K., Abedini, A., and Malakkolahi, H., Pet. Sci. Technol., 2022, vol. 30, pp. 1639‒1646. https://doi.org/10.1080/10916460903394193

    Article  CAS  Google Scholar 

  46. Ghosh, A.K., Srivastava, S.K., and Bagchi, S., Fuel, 2007, vol. 86, no. 16, pp. 2528‒2534. https://doi.org/10.1016/j.fuel.2007.02.027

    Article  CAS  Google Scholar 

Download references

Funding

This work was partially supported by the postgraduate innovation project of China University of Petroleum (East China, project no. YCX2020047).

Author information

Authors and Affiliations

Authors

Contributions

S. Wei: Investigation, Validation, Writing and Editing. D.Lu: Validation, Formal analysis and Writing. Z. Yao: Methodology, Investigation. L. Zhu: Investigation, Resources. C. Yin: Measurement, Validation. D. **a: Conceptualization, Funding acquisition, Review.

Corresponding author

Correspondence to Daohong **a.

Ethics declarations

The authors declare that they have no conflict of interest requiring disclosure in this article.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, S., Lu, D., Yao, Z. et al. Insight into the Structure of Asphaltene after Its Disaggregation by Chemical Processing. Pet. Chem. 64, 346–356 (2024). https://doi.org/10.1134/S0965544124030113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544124030113

Keywords:

Navigation