Log in

On the Black Hole Acceleration in the C-Metric Space-Time

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We consider the C-metric as a gravitational field configuration that describes an accelerating black hole in the presence of a semi-infinite cosmic string, along the accelerating direction. We adopt the expression for the gravitational energy-momentum developed in the teleparallel equivalent of general relativity (TEGR) and obtain an explanation for the acceleration of the black hole. The gravitational energy enclosed by surfaces of constant radius around the black hole is evaluated, and in particular, the energy contained within the gravitational horizon is obtained. This energy turns out to be proportional to the square root of the area of the horizon. We find that the gravitational energy of the semi-infinite cosmic string is negative and dominant for large values of the radius of integration. This negative energy explains the acceleration of the black hole that moves towards regions of lower gravitational energy along the string.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Notes

  1. We remark that when \(C=1\), the line element (6), and consequently the set of tetrad fields (25), does not represent ordinary Minkowski space-time, but just a partition of the latter, delimited by the acceleration horizons. In Section 5 of Ref. [1], it is very clearly stated that test particles at the origin \(r=0\) acquire acceleration along the \(\pm z\) directions, which is certainly not a feature of ordinary, full Minkowski space-time.

References

  1. J. B. Griffiths, P. Krtouš and J. Podolský, “Interpreting the C-metric,” Class. Quantum Grav. 23, 6745–6766 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Torben C. Frost and Volker Perlick, “Lightlike geodesics and gravitational lensing in the spacetime of an accelerating black hole,” Class. Quantum Grav. 38, 085016 (2021).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. T. Levi-Civita, Rend. Accad. Lincei 27, 343–351 (1918).

    Google Scholar 

  4. J. Ehlers and W. Kundt, “Exact solutions of the gravitational field equations,” in Gravitation: an Introduction to Current Research (Ed. L. Witten, Wiley, New York, 1962), pp. 49–101.

  5. Jiří Bičák and David Kofroň, “Accelerating electromagnetic magic field from the C-metric,” Gen. Rel. Grav. 41, 1981-2001 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. B. Mashhoon and U. Muench, “Length measurement in accelerated systems,” Ann. Phys. (Berlin) 11, 532 (2002).

    Article  ADS  MATH  Google Scholar 

  7. B. Mashhoon, “Vacuum electrodynamics of accelerated systems: Nonlocal Maxwell’s equations,” Ann. Phys. (Berlin) 12, 586 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. J. W. Maluf, F. F. Faria, and S.C. Ulhoa, “On reference frames in spacetime and gravitational energy in freely falling frames,” Class. Quantum Grav. 24, 2743 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. J. W. Maluf and F. F. Faria, “On the construction of Fermi–Walker transported frames,” Ann. Phys. (Berlin) 17, 326 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. J. W. Maluf, “Hamiltonian formulation of the teleparallel description of general relativity,” J. Math. Phys. 35, 335 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. J. W. Maluf, “The gravitational energy-momentum tensor and the gravitational pressure,” Ann. Phys. (Berlin) 14, 723 (2005).

    Article  ADS  MATH  Google Scholar 

  12. J. W. Maluf, F. F. Faria, and K. H. Castello-Branco, “The gravitational energy–momentum flux,” Class. Quantum Grav. 20, 4683 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. J. W. Maluf and F. F. Faria, “On gravitational radiation and the energy flux of matter,” Ann. Phys. (Berlin) 13, 604 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. J. W. Maluf, “The teleparallel equivalent of general relativity,” Ann. Phys. (Berlin) 525, 339 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  15. J. W. Maluf, J. F. da Rocha-Neto, T. M. L. Toríbio, and K. H. Castello-Branco, “Energy and angular momentum of the gravitational field in the teleparallel geometry,” Phys. Rev. D 65, 124001 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  16. S. B. Babak and L. P. Grishchuk, Phys. Rev. D 61, 024038 (1999).

    Article  ADS  Google Scholar 

  17. M. O. Katanaev, “Geometric theory of defects,” Phys. Uspekhi 48x(7), 675-701 (2005).

    Article  ADS  Google Scholar 

  18. M. O. Katanaev, “Introduction to the geometric theory of defects,” Lectures at III Summer School in Modern Mathematical Physics, 20-31 August 2004, Zlatibor, Serbia and Montenegro; cond-mat/0502123.

  19. J. W. Maluf and A. Goya, “Space-time defects and teleparallelism,” Class. Quantum Grav. 18, 5143-5154 (2001).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. J. D. Brown and J. W. York, Jr., “Quasi-local energy and conserved charges derived from the gravitational action,” Phys. Rev. D 47, 1407 (1993).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. L. Carneiro, S. C. Ulhoa or J. W. Maluf.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carneiro, F.L., Ulhoa, S.C. & Maluf, J.W. On the Black Hole Acceleration in the C-Metric Space-Time. Gravit. Cosmol. 28, 352–361 (2022). https://doi.org/10.1134/S0202289322040077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289322040077

Navigation