Log in

Relativistic linear oscillator under the action of a constant external force. Transition amplitudes and the Green’s function

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We discuss an exactly solvable relativistic model of a nonrelativistic linear harmonic oscillator in the presence of a constant external force. We show that as in the nonrelativistic case, the relativistic linear oscillator in an external uniform field is unitarily equivalent to the oscillator without this field. Using two methods, we calculate transition amplitudes between energy states of the discrete spectrum of the relativistic linear oscillator under the action of a suddenly applied uniform field. We find Barut–Girardello coherent states and the Green’s function in the coordinate and momentum representations. We obtain the linear and bilinear generating functions for the Meixner–Pollaczek polynomials. We prove that the relativistic wave functions, the generators of the dynamical symmetry group, and the transition amplitudes have the correct nonrelativistic limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Nonrelativistic Theory, Pergamon Press, New York (1973).

    Google Scholar 

  2. A. I. Baz, Ya. B. Zeldovich, and A. M. Perelomov, Scattering, Reactions and Decay in Non-relativistic Quantum Mechanics [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  3. M. Moshinsky and Yu. F. Smirnov, The Harmonic Oscillator in Modern Physics (Contemporary Concepts in Physics, Vol. 9), Harwood Academic Publ., Amsterdam (1996).

    MATH  Google Scholar 

  4. V. B. Berestetskii, E. M. Lifshits, and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 4: Quantum Electrodynamics, Pergamon, New York (1982).

    Google Scholar 

  5. H. Yukawa, “Structure and mass spectrum of elementary particles. II. Oscillator model,” Phys. Rev., 91, 416–417 (1953).

    Article  ADS  MathSciNet  Google Scholar 

  6. M. Markov, “On dynamically deformable form factors in the theory of elementary particles,” Nuovo Cimento, 3, 760–772 (1956).

    Article  MathSciNet  Google Scholar 

  7. R. P. Feynman, M. Kislinger, and F. Ravndal, “Current matrix elements from a relativisti quark model,” Phys. Rev. D, 3, 2706–2732 (1971).

    Article  ADS  Google Scholar 

  8. T. De, Y. S. Kim, and M. E. Noz, “Radial effects in the symmetric quark model,” Nuovo Cimento A, 13, 1089–1101 (1973).

    Article  ADS  Google Scholar 

  9. Y. S. Kim and M. E. Noz, “Group theory of covariant harmonic oscillators,” Am. J. Phys., 46, 480–483 (1978).

    Article  ADS  Google Scholar 

  10. Y. S. Kim and M. E. Noz, “Relativistic harmonic oscillators and hadronic structure in the quantum-mechanics curriculum,” Am. J. Phys., 46, 484–488 (1978).

    Article  ADS  Google Scholar 

  11. M. Moshinsky and A. Szczepaniak, “The Dirac oscillator,” J. Phys. A: Math. Gen., 22, L817–L819 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  12. O. L. de Lange, “Shift operators for a Dirac oscillator,” J. Math. Phys., 32, 1296–1300 (1991).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Z.-F. Li, J.-J. Liu, W. Lucha, W.-G. Ma, and F. F. Schöberl, “Relativistic harmonic oscillator,” J. Math. Phys., 46, 103514, 11 pp. (2005); ar**v: hep-ph/0501268.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. K. Kowalski and J. Rembieliński, “Relativistic massless harmonic oscillator,” Phys. Rev. A, 81, 012118, 6 pp. (2010); ar**v: 1002.0474.

    Article  ADS  Google Scholar 

  15. A. D. Donkov, V. G. Kadyshevskii, M. D. Matveev, and R. M. Mir-Kassimov, “Quasipotential equation for a relativistic harmonic oscillator,” Theoret. and Math. Phys., 8, 673–681 (1971).

    Article  ADS  Google Scholar 

  16. N. M. Atakishiyev, R. M. Mir-Kassimov, and Sh. M. Nagiyev, “Quasipotential models of a relativistic oscillator,” Theoret. and Math. Phys., 44, 592–603 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  17. N. M. Atakishiyev, “Quasipotential wave functions of a relativistic harmonic oscillator and Pollaczek polynomials,” Theoret. and Math. Phys., 58, 166–171 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  18. N. M. Atakishiyev, R. M. Mir-Kasimov, and Sh. M. Nagiyev, “A relativistic model of the isotropic oscillator,” Ann. Phys., 497, 25–30 (1985).

    Article  MathSciNet  Google Scholar 

  19. R. M. Mir-Kasimov, Sh. M. Nagiev, and E. Dzh. Kagramanov, Relyativistskiy lineynyy ostsillyator pod deystviem postoyannoy vneshney sily i bilineynaya proizvodyashchaya funktsiya dlya polinomov Pollacheka (Preprint No. 214), SKB IFAN AzSSR, Baku (1987).

  20. E. D. Kagramanov, R. M. Mir-Kasimov, and Sh. M. Nagiyev, “The covariant linear oscillator and generalized realization of the dynamical \(\mathrm{SU}(1,1)\) symmetry algebra,” J. Math. Phys., 31, 1733–1738 (1990).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. R. M. Mir-Kasimov, “\(\mathrm{SU}_q(1,1)\) and the relativistic oscillator,” J. Phys. A: Math. Gen., 24, 4283–4302 (1991).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Yu. A. Grishechkin and V. N. Kapshai, “Solution of the Logunov–Tavkhelidze equation for the three-dimensional oscillator potential in the relativistic configuration representation,” Russ. Phys. J., 61, 1645–1652 (2019).

    Article  MATH  Google Scholar 

  23. N. M. Atakishiyev, Sh. M. Nagiyev, and K. B. Wolf, “Realization of \(Sp(2,\mathfrak{R})\) by finite-difference operators: The relativistic oscillator in an external field,” J. Group Theor. Phys., 3, 61–70 (1995).

    MathSciNet  Google Scholar 

  24. Sh. M. Nagiyev and R. M. Mir-Kassimov, “Relativistic linear oscillator under the action of a constant,” Theoret. and Math. Phys., 208, 1265–1276 (2021).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Yu. A. Grishechkin and V. N. Kapshai, “Approximate analytic solution of the Logunov–Tavkhelidze equation for a one-dimensional oscillator potential in the relativistic configuration representation,” Theoret. and Math. Phys., 211, 826–837 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  26. V. G. Kadyshevsky, R. M. Mir-Kasimov, and N. B. Skachkov, “Quasi-potential approach and the expansion in relativistic spherical functions,” Nuovo Cimento A, 55, 233–257 (1968).

    Article  ADS  Google Scholar 

  27. V. G. Kadyshevskii, R. M. Mir-Kasimov, and N. B. Skachkov, “Three-dimensional formulation of the relativistic two-body problem,” Part. Nucl., 2, 635–690 (1972).

    Google Scholar 

  28. N. M. Atakishiyev and K. B. Wolf, “Generalized coherent states for a relativistic model of the linear oscillator in a homogeneous external field,” Rep. Math. Phys., 27, 305–311 (1989).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. N. M. Atakishiyev, Sh. M. Nagiyev, and K. B. Wolf, “Wigner distribution functions for a relativistic linear oscillator,” Theoret. and Math. Phys., 114, 322–334 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Sh. M. Nagiyev, G. H. Guliyeva, and E. I. Jafarov, “The Wigner function of the relativistic finite-difference oscillator in an external field,” J. Phys. A: Math. Theor., 42, 454015, 10 pp. (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. K. Husimi, “Miscellanea in elementary quantum mechanics, II,” Progr. Theor. Phys., 9, 381–402 (1953).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. E. H. Kerner, “Note on the forced and damped oscillator in quantum mechanics,” Can. J. Phys., 36, 371–377 (1958).

    Article  ADS  MATH  Google Scholar 

  33. Sh. M. Nagiyev and A. I. Akhmedov, “Time evolution of quadratic quantum systems: Evolution operators, propagators, and invariants,” Theoret. and Math. Phys., 198, 392–411 (2019).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. A. O. Barut and R. Raczka, Theory of Group Representations and Applications, World Sci., Singapore; Polish Sci. Publ. PWN, Warszawa (1986).

    Book  MATH  Google Scholar 

  35. A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 3: Special Functions, Gordon and Breach, New York (1986).

    MATH  Google Scholar 

  36. R. W. Fuller, S. M. Harris, and E. L. Slaggie, “\(S\)-matrix solution for the forced harmonic oscillator,” Am. J. Phys., 31, 431–439 (1963).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. P. Carruthers and M. M. Nieto, “Coherent states and forced quantum oscillator,” Am. J. Phys., 33, 537–544 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  38. H. Bateman and A. Erdélyi, Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York–Toronto–London (1953).

    MATH  Google Scholar 

  39. R. Koekoek, P. A. Lesky, and R. F. Swarttouw, Hypergeometric Orthogonal Polynomials and Their q-Analogues, Springer, Berlin (2010).

    Book  MATH  Google Scholar 

  40. M. M. Nieto and D. R. Truax, “Holstein–Primakoff/Bogoliubov transformations and multiboson system,” Fortschr. Phys., 45, 145–156 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  41. A. M. Perelomov, “Coherent states for arbitrary Lie group,” Commun. Math. Phys., 26, 222–236 (1972).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. A. O. Barut and L. Girardello, “New ‘coherent’ states associated with non-compact groups,” Commun. Math. Phys., 21, 41–55 (1971).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 1: Elementary Functions, Gordon and Breach, New York (1986).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh. M. Nagiyev.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2023, Vol. 214, pp. 81–101 https://doi.org/10.4213/tmf10337.

Appendix

We prove equality (4.7). Using the Baker–Hausdorff formula [40]

$$ e^{zK_+^0 - z^{*}K_-^0} = e^{e^{i\theta}tK_+^0} e^{u\Gamma_0^0} e^{e^{-i\theta}tK_-^0},$$
(A.1)
where \(z = re^{i\theta}\), \(t = \operatorname{tanh} r\), \(u = - 2\ln\cosh r = \ln(1 - t^2)\), we represent operator \(S^g\) (4.7) in the disentangled normal form
$$ S^g = e^{itK_+^0}e^{u\Gamma_0^0}e^{itK_-^0}e^{i\gamma\Gamma_0^0},$$
(A.2)
where, in our case, \(z = i\beta/2\), \(t = \operatorname{tanh}(\beta/2) = \rho/(1 + \delta)\), and \(u = - 2\ln\cosh(\beta/2)\). Operator (A.1) can also be written in the disentangled antinormal form
$$ e^{zK_+^0 - z^{*}K_-^0} = e^{-e^{-i\theta}tK_-^0} e^{-u\Gamma_0^0} e^{e^{i\theta}tK_+^0}.$$
(A.3)

On the other hand, using operator representation (4.6) for the orthonormalized states of the linear harmonic oscillator in a uniform external field, we obtain

$$ S^g\psi_n^0 = \frac{1}{\sqrt{n!(2\nu)_n}}S^g (-K_+^0)^n \psi^0_0 = \frac{1}{\sqrt{n!(2\nu)_n}} (-K_+^g)^n S^g\psi^0_0.$$
(A.4)
Now it suffices to show that \(S^g\psi_0^0 = \psi_0^g\). We have
$$ S^g\psi_0^0 = e^{(i\gamma + u)\nu}\sum_{n = 0}^{\infty} (-it)^n \sqrt{\frac{(2\nu)_n}{n!}} \psi^0_n.$$
(A.5)
Below, we calculate in the \(x\)-space. We substitute the explicit form
$$\psi_n^0(x)=\psi_n^g(x)|_{g = 0}$$
in (A.5) and use the generating function for the Meixner–Pollaczek polynomials [38],
$$\sum_{n = 0}^{\infty}z^{n}P_n^{\nu}(x;\varphi) = (1 - ze^{i\varphi})^{- \nu + ix}(1 - ze^{- i\varphi})^{- \nu - ix},\qquad |z| < 1,$$
with \(\varphi = \pi/2\). As a result, we arrive at the expression
$$ S^g\psi_0^0 = \frac{2^{\nu}}{\sqrt{2\pi\lambda_\mathrm{C}\Gamma(2\nu)}} e^{i\gamma\nu}\omega_0^{ix/\lambda_\mathrm{C}} \Gamma\biggl(\nu + \frac{ix}{\lambda_\mathrm{C}}\biggr)\biggl(\frac{1 - t^2}{1 + t^2}\biggr)^{\nu} \biggl(\frac{1 +it}{1 -it}\biggr)^{ix/\lambda_\mathrm{C}}.$$
(A.6)
Substituting the value of the parameter \(t\) from (A.2) in (A.6), we find after simple transformations that the right-hand side of (A.6) indeed coincides with the ground-state wave function \(\psi_0^g\) in of the relativistic linear oscillator in a uniform external field, Eq. (3.6). This completes the proof of relation (4.7).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagiyev, S.M., Mir-Kasimov, R.M. Relativistic linear oscillator under the action of a constant external force. Transition amplitudes and the Green’s function. Theor Math Phys 214, 72–88 (2023). https://doi.org/10.1134/S004057792301004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004057792301004X

Keywords

Navigation