Log in

Electrochemical Properties of N-Methyl-2,2'-bipyridinium Iodide and N,N'-Dimethyl-2,2'-bipyridinium Iodide

  • ELECTROCHEMISTRY. GENERATION AND STORAGE OF ENERGY FROM RENEWABLE SOURCES
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The electrochemical properties of N-substituted salts of 2,2'-bipyridine: N-methyl-2,2'-bipyridinium iodide and N,N '-dimethyl-2,2'-bipyridinium iodide were studied by cyclic voltammetry (CV). The electrochemical properties are greatly affected by the methyl substituents at the nitrogen atom in the ortho-bipyridine molecule. The conproportionation constants were calculated for N,N '-dimethyl-2,2'-bipyridinium iodide and made it possible to judge about the degree of electron localization in the systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. R. S. Weber, ACS Catal. 9, 946 (2019). https://doi.org/10.1021/acscatal.8b04143

    Article  CAS  Google Scholar 

  2. G. Chisholm, T. Zhao, and L. Cronin, in Storing Energy: With Special Reference to Renewable Energy Sources (Elsevier, Amsterdam, 2022), p. 559. https://doi.org/10.1016/B978-0-12-824510-1.00015-5

    Book  Google Scholar 

  3. Z. Chen, W. Wei, L. Song, et al., Sustainable Horizons 1, 100002 (2022). https://doi.org/10.1016/j.horiz.2021.100002

  4. Catalysts for Sustainable Hydrogen Production: Preparation, Applications and Process Integration (MDPI, 2022). https://doi.org/10.3390/books978-3-0365-3671-2

  5. J. K. Nørskov, T. Bligaard, A. Logadottir, et al., J. Electrochem. Soc. 152 (3), 1 (2005). https://doi.org/10.1149/1.1856988

    Article  CAS  Google Scholar 

  6. X. Gao and S. Kawi, in Heterogeneous Catalysis for Sustainable Energy, Ed. by Landong Li and J. S. J. Hargreaves (Wiley-VCH, Weinheim, 2022), p. 1. https://doi.org/10.1002/9783527815906.ch1

    Book  Google Scholar 

  7. N. Queyriaux, D. Sun, J. Fize, et al., J. Am. Chem. Soc. 142, 274 (2020). https://doi.org/10.1021/jacs.9b10407

    Article  CAS  PubMed  Google Scholar 

  8. M. Wang, L. Chen, and L. Sun, Energy Environ. Sci. 5, 6763 (2012). https://doi.org/10.1039/c2ee03309g

    Article  CAS  Google Scholar 

  9. Y. Huang, A. G. A. Mohamed, J. **e, et al., Nano Energy 82, 105745 (2021). https://doi.org/10.1016/j.nanoen.2021.105745

  10. N. Dubouis and A. Grimaud, Chem. Sci. 10, 9165 (2019). https://doi.org/10.1039/C9SC03831K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. J. A. Cracknell, K. A. Vincent, and F. A. Armstrong, Chem. Rev. 108, 2439 (2008). https://doi.org/10.1021/cr0680639

    Article  CAS  PubMed  Google Scholar 

  12. D. Merki and X. R. Hu, Energy Environ. Sci. 4, 3878 (2011). https://doi.org/10.1039/c1ee01970h

    Article  CAS  Google Scholar 

  13. A. V. Dolganov, O. V. Tarasova, A. Y. Ivleva, et al., Int. J. Hydrogen Energy 42, 27084 (2017). https://doi.org/10.1016/j.ijhydene.2017.09.080

    Article  CAS  Google Scholar 

  14. A. V. Dolganov, O. V. Tarasova, D. N. Moiseeva, et al., Int. J. Hydrogen Energy 41, 9312 (2016). https://doi.org/10.1016/j.ijhydene.2016.03.131

    Article  CAS  Google Scholar 

  15. A. V. Dolganov, A. V. Balandina, D. B. Chugunov, A. S. Timonina, Yu. I. Lyukshina, A. A. Ahmatova, A. D. Yudina, V. V. Shindina, V. O. Zhirnova, L. A. Klimaeva, and A. K. Osipov, Russ. J. Gen. Chem. 90, 1229 (2020). https://doi.org/10.1134/S1070363220070099

    Article  CAS  Google Scholar 

  16. A. V. Dolganov, B. S. Tanaseichuk, M. K. Pryanichnikova, et al., J. Phys. Org. Chem. 32, e3930 (2019). https://doi.org/10.1002/poc.3930

  17. A. V. Dolganov, E. E. Muryumin, O. Y. Chernyaeva, et al., Mater. Chem. Phys. 224, 148 (2019). https://doi.org/10.1016/j.matchemphys.2018.12.006

    Article  CAS  Google Scholar 

  18. A. V. Dolganov, B. S. Tanaseichuk, Y. V. Tsebulaeva, et al., Int. J. Electrochem. Sci. 11, 9559 (2016). https://doi.org/10.20964/2016.11.24

  19. A. V. Dolganov, O. V. Tarasova, A. V. Balandina, O. Yu. Chernyaeva, V. Yu. Yurova, Yu. M. Selivanova, and A. D. Yudina, Russ. J. Org. Chem. 55, 938 (2019). https://doi.org/10.1134/S1070428019070030

    Article  CAS  Google Scholar 

  20. A. V. Dolganov, B. S. Tanaseichuk, V. Yu. Yurova, et al., Int. J. Hydrogen Energy 44, 21495 (2019). https://doi.org/10.1016/j.ijhydene.2019.06.067

    Article  CAS  Google Scholar 

  21. A. V. Dolganov, B. S. Tanaseichuk, D. N. Moiseeva, et al., Electrochem. Commun. 68, 59 (2016). https://doi.org/10.1016/j.elecom.2016.04.015

    Article  CAS  Google Scholar 

  22. A. V. Dolganov, O. Y. Chernyaeva, S. G. Kostryukov, et al., Int. J. Hydrogen Energy 45, 501 (2020). https://doi.org/10.1016/j.ijhydene.2019.10.175

    Article  CAS  Google Scholar 

  23. A. V. Dolganov, B. S. Tanaseichuk, O. V. Tarasova, O. Yu. Chernyaeva, Yu. M. Selivanova, A. D. Yudina, K. A. Grigor’yan, A. V. Balandina, and V. Yu. Yurova, Russ. J. Electrochem. 55, 807 (2019). https://doi.org/10.1134/S1023193519080056

    Article  CAS  Google Scholar 

  24. O. Yu. Ganz, L. A. Klimaeva, D. B. Chugunov, A. V. Mazhorova, A. V. Dolganov, and A. V. Knyazev, Russ. J. Phys. Chem. A 96, 954 (2022). https://doi.org/10.1134/S0036024422050120

    Article  CAS  Google Scholar 

  25. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, et al., J. Phys. Chem. 98, 11623 (1994). https://doi.org/10.1021/j100096a001

    Article  CAS  Google Scholar 

  26. R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys. 54, 724 (1971). https://doi.org/10.1063/1.1674902

    Article  CAS  Google Scholar 

  27. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., J. Comput. Chem. 14, 1347 (1993). https://doi.org/10.1002/jcc.540141112

    Article  CAS  Google Scholar 

  28. M.-H. Baik and R. A. Friesner, J. Phys. Chem. A 106, 7407 (2002). https://doi.org/10.1021/jp025853n

    Article  CAS  Google Scholar 

  29. Yun-Fang Gao, Li-Li Yu, Qing-Qing Lu, and M. A. Chun-An, J. Acta Phys. Chim. Sin. 25, 1421 (2009). https://doi.org/10.3866/PKU.WHXB20090735

    Article  CAS  Google Scholar 

  30. M. B. Robin and P. Day, Adv. Inorg. Chem. Radiochem. 10, 247 (1968). https://doi.org/10.1016/S0065-2792(08)60179-X

    Article  Google Scholar 

  31. P. Zanello, S. Tamburini, P. A. Vigato, et al., Coord. Chem. Rev. 77, 165 (1987). https://doi.org/10.1016/0010-8545(87)85034-8

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Ministry of Science and Higher Education of the Russian Federation (topic no. 121111000064-5). It was performed under the government contract at Mordovia National Research University (creation of new laboratories for young researchers).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Dolganov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Smolina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolganov, A.V., Klimaeva, L.A., Muryumin, E.E. et al. Electrochemical Properties of N-Methyl-2,2'-bipyridinium Iodide and N,N'-Dimethyl-2,2'-bipyridinium Iodide. Russ. J. Phys. Chem. 97, 2307–2313 (2023). https://doi.org/10.1134/S0036024423100060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423100060

Keywords:

Navigation