Log in

Monitoring of the Process of Immersion Optical Clearing of Collagen Bundles Using Optical Coherence Tomography

  • APPLIED OPTICS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Future development of the method of immersion optical clearing of biological tissues—this method is widely used in the study of the morphology and pathologies of tissues in vitro and considered promising for in vivo applications in biophysical research and medicine—requires knowledge of the details of interaction of immersion liquids with the tissue, in particular, the characteristics both of the tissue dehydration process, which is caused by the osmotic effect of the immersion liquid, and the process of diffusion of the immersion agent (IA) into the tissue. The optical properties of skin dermis, eye sclera, tendon, and many other tissues are determined by the properties of collagen bundles, abundant in these tissues. In the present work, a convenient and reliable technique for monitoring the optical properties and geometry of collagen bundles in the course of their immersion clearing in vitro, based on optical coherence tomography (OCT), is proposed. The main advantage of this technique is that it allows one to monitor changes in the geometric and optical properties of the tissue simultaneously, without interrupting the natural course of the immersion clearing process, and to obtain reliable estimates of the characteristic times and rates of both the process of tissue dehydration and process of diffusion of the IA into the tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. V. V. Tuchin, Tissue Optics. Light Scattering Methods and Instruments for Medical Diagnosis (Fizmatlit, Moscow, 2012) [in Russian].

    Google Scholar 

  2. A. Azaripour, T. Lagerweij, C. Scharfbillig, A. E. Jadczak, B. Willershausen, and C. J. van Noorden, Prog. Histochem. Cytochem. 51, 9 (2016). https://doi.org/10.1016/j.proghi.2016.04.001

    Article  Google Scholar 

  3. D. D. Yakovlev, M. E. Shvachkina, M. M. Sherman, A. V. Spivak, A. B. Pravdin, and D. A. Yakovlev, J. Biomed. Opt. 21, 071111 (2016). https://doi.org/10.1117/1.JBO.21.7.071111

    Article  ADS  Google Scholar 

  4. I. Costantini, J. P. Ghobril, A. P. di Giovanna, et al., Sci. Rep. 5, 9808 (2015). https://doi.org/10.1038/srep09808

    Article  Google Scholar 

  5. Zhu Dan, K. V. Larin, Q. Luo, and V. V. Tuchin, Laser Photon. Rev. 7, 732 (2013). https://doi.org/10.1002/lpor.201200056

    Article  ADS  Google Scholar 

  6. E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, Expert Rev. Med. Dev. 7, 825 (2010). https://doi.org/10.1586/erd.10.50

    Article  Google Scholar 

  7. E. A. Genina, A. N. Bashkatov, Y. P. Sinichkin, and V. V. Tuchin, Quantum Electron. 36, 1119 (2006). https://doi.org/10.1070/QE2006v036n12ABEH013337

    Article  ADS  Google Scholar 

  8. Y. Alexandrovskaya, K. Sadovnikov, A. Sharov, A. Sherstneva, E. Evtushenko, A. Omelchenko, M. Obrezkova, V. Tuchin, V. Lunin, and E. Sobol, J. Biophoton. 11, e201700105 (2018). https://doi.org/10.1002/jbio.201700105

  9. Y. M. Alexandrovskaya, E. G. Evtushenko, M. M. Obrezkova, V. V. Tuchin, and E. N. Sobol, J. Biophoton. 11, e201800195 (2018). https://doi.org/10.1002/jbio.201800195

  10. A. N. Bashkatov, E. A. Genina, Yu. P. Sinichkin, V. I. Kochubei, N. A. Lakodina, and V. V. Tuchin, Biophysics 48, 292 (2003).

    Google Scholar 

  11. K. V. Larin and V. V. Tuchin, Quantum Electron. 38, 551 (2008). https://doi.org/10.1070/QE2008v038n06ABEH013850

    Article  ADS  Google Scholar 

  12. D. K. Tuchina, V. D. Genin, A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, Opt. Spectrosc. 120, 28 (2016). https://doi.org/10.1134/S0030400X16010215

    Article  ADS  Google Scholar 

  13. D. K. Tuchina, R. Shi, A. N. Bashkatov, E. A. Genina, D. Zhu, Q. Luo, and V. V. Tuchin, J. Biophoton. 8, 332 (2015). https://doi.org/10.1002/jbio.201400138

  14. G. J. Tearney, M. E. Brezinski, B. E. Bouma, M. R. Hee, J. F. Southern, and J. G. Fujimoto, Opt. Lett. 20, 2258 (1995). https://doi.org/10.1364/OL.20.002258

    Article  ADS  Google Scholar 

  15. Y. L. Kim, J. T. Walsh, Jr., T. K. Goldstick, and M. R. Glucksberg, Phys. Med. Biol. 49, 859 (2004). https://doi.org/10.1088/0031-9155/49/5/015

    Article  Google Scholar 

  16. W. V. Sorin and D. F. Gray, IEEE Photon. Technol. Lett. 4, 105 (1992). https://doi.org/10.1109/68.124892

    Article  ADS  Google Scholar 

  17. X. J. Wang, T. E. Milner, M. C. Chang, and J. S. J. Nelson, Biomed. Opt. 1, 212 (1996). https://doi.org/10.1117/12.227699

    Article  Google Scholar 

  18. M. E. Shvachkina, D. D. Yakovlev, A. B. Pravdin, and D. A. Yakovlev, J. Biomed. Photon. Eng. 4, 010302 (2018). https://doi.org/10.18287/JBPE18.04.010302

    Article  Google Scholar 

  19. Z. Bor, K. Osvay, B. Racz, and G. Szabo, Opt. Commun. 78, 109 (1990). https://doi.org/10.1016/0030-4018(90)90104-2

    Article  ADS  Google Scholar 

  20. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge Univ. Press, Cambridge, 1999).

    Book  MATH  Google Scholar 

  21. D. J. Segelstein, Doctoral Dissertation (Univ. Missouri, Kansas City, 1981).

  22. De F. Chaumont, S. Dallongeville, N. Chenouard, et al., Nat. Methods 9, 690 (2012). https://doi.org/10.1038/nmeth.2075

    Article  Google Scholar 

  23. C. Morin, C. Hellmich, and P. Henits, J. Theor. Biol. 317, 384 (2013). https://doi.org/10.1016/j.jtbi.2012.09.026

    Article  Google Scholar 

  24. D. W. Leonard and K. M. Meek, Biophys. J. 72, 1382 (1997). https://doi.org/10.1016/S0006-3495(97)78784-8

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Federation for Basic Research (project nos. 17-00-00275 (17-00-00272), 17-00-00270/17, and 18-52-16025/18) and by the Ministry of Education and Science of the Russian Federation (project no. 3.1586.2017/4.6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Yakovlev.

Ethics declarations

The authors declare that they have no conflict of interest.

COMPLIANCE WITH ETHICAL STANDARDS

Statement on the welfare of animals. The study on rats was approved by the Ethics Committee of Saratov State Medical University.

Additional information

Translated by O. Maslova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shvachkina, M.E., Yakovlev, D.D., Lazareva, E.N. et al. Monitoring of the Process of Immersion Optical Clearing of Collagen Bundles Using Optical Coherence Tomography. Opt. Spectrosc. 127, 359–367 (2019). https://doi.org/10.1134/S0030400X19080241

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X19080241

Keywords:

Navigation