Log in

Optical Clearing of Human Skin Using Some Monosaccharides in vivo

  • BIOPHOTONICS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

We present the results of in vivo optical immersion clearing of human skin by aqueous solutions of some immersion agents (ribose, glucose, and fructose monosaccharides and glycerol), obtained using optical coherence tomography (OCT). To assess the efficiency of optical clearing, we determined the values of the rate of change of the light scattering coefficient, obtained using the averaged A-scan of the OCT signal in the derma section at a depth of 350–700 μm. A good correlation was observed between the rate of change of the light scattering coefficient and the potential of the optical clearing. Using complex molecular simulation of the interaction of a number of immersion clearing agents with collagen mimetic peptide (GPH)3 using classical molecular dynamics and quantum chemistry, we found correlations between the efficiency of optical clearing and the energy of intermolecular interaction of cleaning agents with a fragment of collagen peptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. M. Hirshburg, Doctoral Dissertation (Texas A&M Univ., College Station, 2009), p. 119.

  2. V. V. Tuchin, Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues (Taylor & Francis Group, CRC, Boca Raton, FL, 2009), p. 744.

  3. V. V. Tuchin, Optical Clearing of Tissues and Blood (SPIE, Bellingham, WA, 2006), p. 256.

    Google Scholar 

  4. D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, Laser Photon. Rev. 7, 732 (2013). https://doi.org/10.1002/lpor.201200056

    Article  ADS  Google Scholar 

  5. E. A. Genina, A. N. Bashkatov, Yu. P. Sinichkin, I. Yu. Yanina, and V. V. Tuchin, J. Biomed. Photon. Eng. 1, 22 (2015). https://doi.org/10.18287/jbpe-2015-1-1-22

    Article  Google Scholar 

  6. E. A. Genina, A. N. Bashkatov, V. I. Kochubey, and V. V. Tuchin, Opt. Spectrosc. 98, 470 (2005). https://doi.org/10.1134/1.1890530

    Article  ADS  Google Scholar 

  7. E. A. Genina, A. N. Bashkatov, Yu. P. Sinichkin, and V. V. Tuchin, Quantum Electron. 36, 1119 (2006). https://doi.org/10.1070/QE2006v036n12ABEH013337

    Article  ADS  Google Scholar 

  8. A. N. Bashkatov, A. N. Korolevich, V. V. Tuchin, Yu. P. Sinichkin, E. A. Genina, M. M. Stolnitz, N. S. Dubina, S. I. Vecherinski, and M. S. Belsley, Asian J. Phys. 15, 1 (2006).

    Google Scholar 

  9. E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, Adv. Opt. Technol. 2008, 267867 (2008). https://doi.org/10.1155/2008/267867

    Article  Google Scholar 

  10. A. N. Bashkatov, E. A. Genina, V. V. Tuchin, and G. B. Altshuler, Laser Phys. 19, 1312 (2009). https://doi.org/10.1134/S1054660X09060231

    Article  ADS  Google Scholar 

  11. X. Wen, V. V. Tuchin, Q. Luo, and D. Zhu, Phys. Med. Biol. 54, 6917 (2009). https://doi.org/10.1088/0031-9155/54/22/011

    Article  Google Scholar 

  12. N. Sudheendran, K. V. Larin, M. Mohamed, M. G. Ghosn, and V. V. Tuchin, J. Innov. Opt. Health Sci. 3, 169 (2010). https://doi.org/10.1142/S1793545810001039

    Article  Google Scholar 

  13. X. Wen, S. L. Jacques, V. V. Tuchin, and D. Zhu, J. Biomed. Opt. 17, 066022 (2012). https://doi.org/10.1117/1.JBO.17.6.066022

    Article  ADS  Google Scholar 

  14. G. V. Simonenko, E. S. Kirillova, and V. V. Tuchin, Opt. Memory Neural Networks 18, 129 (2009). https://doi.org/10.3103/S1060992X09020106

    Article  Google Scholar 

  15. K. V. Larin and V. V. Tuchin, Quantum Electron. 38, 551 (2008). https://doi.org/10.1070/QE2008v038n06ABEH013850

    Article  ADS  Google Scholar 

  16. D. K. Tuchina, R. Shi, A. N. Bashkatov, E. A. Genina, D. Zhu, Q. Luo, and V. V. Tuchin, J. Biophoton. 8, 332 (2015). https://doi.org/10.1002/jbio.201400138

  17. X. Wen, Z. Mao, Z. Han, V. V. Tuchin, and D. Zhu, J. Biophoton. 3, 44 (2010). https://doi.org/10.1002/jbio.200910080

  18. J. M. Hirshburg, K. M. Ravikumar, W. Hwang, and A. Yeh, J. Biomed. Opt. 15, 055002 (2010). https://doi.org/10.1117/1.3484748

    Article  ADS  Google Scholar 

  19. W. Feng, R. Shi, N. Ma, D. K. Tuchina, V. V. Tuchin, and D. Zhu, J. Biomed. Opt. 21, 081207 (2016). https://doi.org/10.1117/1.JBO.21.8.081207

    Article  ADS  Google Scholar 

  20. T. Yu, X. Wen, V. V. Tuchin, Q. Luo, and D. Zhu, J. Biomed. Opt. 16, 095002 (2011). https://doi.org/10.1117/1.3621515

    Article  ADS  Google Scholar 

  21. K. N. Dvoretsky, K. V. Berezin, M. L. Chernavina, A. M. Likhter, I. T. Shagautdinova, E. M. Antonova, A. V. Rybakov, O. N. Grechukhina, and V. V. Tuchin, Proc. SPIE 10716, 1071624 (2018). https://doi.org/10.1117/12.2311866

    Google Scholar 

  22. K. N. Dvoretsky, K. V. Berezin, M. L. Chernavina, A. M. Likhter, I. T. Shagautdinova, E. M. Antonova, O. N. Grechukhina, and V. V. Tuchin, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 12, 961 (2018). https://doi.org/10.1134/S1027451018050233

    Article  Google Scholar 

  23. K. V. Berezin, K. N. Dvoretski, M. L. Chernavina, A. M. Likhter, V. V. Smirnov, I. T. Shagautdinova, E. M. Antonova, E. Yu. Stepanovich, E. A. Dzhalmuhambetova, and V. V. Tuchin, J. Mol. Model. 24, 45 (2018). https://doi.org/10.1007/s00894-018-3584-0

    Article  Google Scholar 

  24. K. V. Berezin, K. N. Dvoretskiy, M. L. Chernavina, V. V. Nechaev, A. M. Likhter, I. T. Shagautdinova, E. Yu. Stepanovich, O. N. Grechukhina, and V. V. Tuchin, Proc. SPIE 10336, 103360J (2017). https://doi.org/10.1117/12.2267979

    Google Scholar 

  25. A. N. Bashkatov, K. V. Berezin, K. N. Dvoretskiy, M. L. Chernavina, E. A. Genina, V. D. Genin, V. I. Kochubey, E. N. Lazareva, A. B. Pravdin, M. E. Shvachkina, P. A. Timoshina, D. K. Tuchina, D. D. Yakovlev, D. A. Yakovlev, I. Yu. Yanina, O. S. Zhernovaya, and V. V. Tuchin, J. Biomed. Opt. 23, 091416 (2018). https://doi.org/10.1117/1.JBO.23.9.091416

    Article  ADS  Google Scholar 

  26. D. J. Faber, F. J. van der Meer, M. C. G. Aalders, and T. G. van Leeuwen, Opt. Express 12, 4353 (2004). https://doi.org/10.1364/OPEX.12.004353

    Article  ADS  Google Scholar 

  27. P. Lee, W. Gao, and X. Zhang, Appl. Opt. 49, 3538 (2010). https://doi.org/10.1364/AO.49.003538

    Article  ADS  Google Scholar 

  28. E. A. Genina, A. N. Bashkatov, E. A. Kolesnikova, M. V. Basko, G. S. Terentyuk, and V. V. Tuchin, J. Biomed. Opt. 19, 021109 (2013). https://doi.org/10.1117/1.JBO.19.2.021109

    Article  Google Scholar 

  29. R. K. Wang and V. V. Tuchin, Handbook of Coherent-Domain Optical Methods. Biomedical Diagnostics, Environmental Monitoring, and Material Science (Springer, Berlin, 2013), Vol. 2, p. 665.

    Google Scholar 

  30. K. Okuyama, K. Miyama, K. Mizuno, and H. P. Bachinger, Biopolymers 97, 607 (2012). https://doi.org/10.1002/bip.22048

    Article  Google Scholar 

  31. W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, Jr., D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, J. Am. Chem. Soc. 117, 5179 (1995). https://doi.org/10.1021/ja00124a002

    Article  Google Scholar 

  32. A. D. Becke, J. Chem. Phys. 98, 5648 (1993). https://doi.org/10.1063/1.464913

    Article  ADS  Google Scholar 

  33. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988). https://doi.org/10.1103/PhysRevB.37.785

    Article  ADS  Google Scholar 

  34. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Revision A.02 (Gaussian, Inc., Pittsburgh, PA, 2009).

    Google Scholar 

  35. D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, E. A. Mark, and H. J. C. Berendsen, J. Comput. Chem. 26, 1701 (2005). https://doi.org/10.1002/jcc.20291

    Article  Google Scholar 

  36. Y. Duan, C. Wu, S. Chowdhury, M. C. Lee, G. **ong, W. Zhang, R. Yang, P. Cieplak, R. Luo, T. Lee, J. Caldwell, J. Wang, and P. Kollman, J. Comput. Chem. 24, 1999 (2003). https://doi.org/10.1002/jcc.10349

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to E.A. Genina, A.N. Bashkatov, and D.K. Tuchina for assistance in conducting experiments.

Funding

This work was partially supported by the Russian Foundation for Basic Research (projects nos. 18-52-16025 NTsNIL_a and 18-07-01228 a) and within the framework of state orders to higher educational institutions and scientific organizations in the field of scientific activities of the Ministry of Education and Science of Russian Federation (project no. 3.9128.2017/BCh).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Dvoretskii.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

STATEMENT OF COMPLIANCE WITH STANDARDS OF RESEARCH INVOLVING HUMAN BEINGS AS SUBJECTS

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants involved in the study.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berezin, K.V., Dvoretskii, K.N., Chernavina, M.L. et al. Optical Clearing of Human Skin Using Some Monosaccharides in vivo. Opt. Spectrosc. 127, 352–358 (2019). https://doi.org/10.1134/S0030400X19080071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X19080071

Keywords:

Navigation