Log in

Influence of Preparation Method of Ag–CeO2 Catalysts on Their Structure and Activity in Soot Combustion

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The exhaust gases from motor vehicles contain unburned soot particles that pollute the environment and have a detrimental effect on the human health. The solution to this problem requires the development of new highly efficient Pt- and Pd-less catalysts for the oxidation of soot in exhaust gases. In the present work, the catalysts based on the Ag–CeO2 composition were synthesized by two techniques (co-precipitation and incipient wetness impregnation) and characterized by a complex of physicochemical methods (low-temperature nitrogen adsorption, powder X-ray diffraction (XRD), high-resolution transmission electron microscopy (TEM HR) and temperature-programmed oxidation (TPO)). The catalytic properties of the catalysts were studied in the reaction of soot oxidation. It was shown that the Ag–CeO2 catalyst prepared by the coprecipitation method was the most active in soot oxidation. The increased activity of the catalyst was associated with the formation of a complex structure, representing an agglomerate of strongly interacting silver and ceria particles, which significant affect the low-temperature activation of oxygen on the catalyst surface as shown by the TPO method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Aneggi, E., de Leitenburg, C., and Trovarelli, A., Catalysis by Ceria and Related Materials, London: Imperial College Press, 2013, 2nd ed.

    Google Scholar 

  2. Heck, R.M., Farrauto, R.J., and Gulati, S.T., Catalytic Air Pollution Control: Commercial Technology, 3rd ed., New York: Wiley, 2016.

    Google Scholar 

  3. Lox, E.S.J., Ertl, G., Knözinger, H., Schüth, F., and Weitkamp, J., Handbook of Heterogeneous Catalysis, Weinheim: Wiley, 2008, 2nd ed., p. 2274.

    Google Scholar 

  4. Frank, B., Schlögl, R., and Su, D.S., Environ. Sci. Technol., 2013, vol. 47, p. 3026.

    Article  CAS  PubMed  Google Scholar 

  5. Fino, D., Bensaid, S., Piumetti, M., and Nunzio, M.P., Appl. Catal., A, 2015, vol. 509, p. 75–96.

  6. Oi-Uchisawa, J., Obuchi, A., Wang, S., Nanba, T., and Ohi, A., Appl. Catal., B, 2003, vol. 43, p. 117.

    Article  CAS  Google Scholar 

  7. Neyertz, C.A., Banus, E.D., Mirό, E.E., and Querini, C.A., Chem. Eng. J., 2014, vol. 248, p. 394.

    Article  CAS  Google Scholar 

  8. Trovarelli, A. and Llorca, J., ACS Catal., 2017, vol. 7, p. 4716.

    Article  CAS  Google Scholar 

  9. Farmer, J.A. and Campbell, C.T., Science, 2010, vol. 329, p. 933.

    Article  CAS  PubMed  Google Scholar 

  10. Dvorak, F., Farnesi Camellone, M., Tovt, A., Tran, N.D., Negreiros, F.R., Vorokhta, M., Skala, T., Matolinova, I., Myslivecek, J., Matolin, V., and Fabris, S., Nat. Commun., 2016, vol. 7, 10801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jones, J., **ong, H.F., Delariva, A.T., Peterson, E.J., Pham, H., Challa, S.R., Qi, G.S., Oh, S., Wiebenga, M.H., Hernandez, X.I.P., Wang, Y., and Datye, A.K., Science, 2016, vol. 353, p. 150.

    Article  CAS  PubMed  Google Scholar 

  12. Carrettin, S., Concepcion, P., Corma, A., Nieto, J.M.L., and Puntes, V.F., Angew. Chem., 2004, vol. 43, p. 2538.

    Article  CAS  Google Scholar 

  13. Vayssilov, G.N., Lykhach, Y., Migani, A., Staudt, T., Petrova, G.P., Tsud, N., Skala, T., Bruix, A., Illas, F., Prince, K.C., Matolin, V., Neyman, K.M., and Libuda, J., Nat. Mater., 2011, vol. 10, p. 310.

    Article  CAS  PubMed  Google Scholar 

  14. Mudiyanselage, K., Senanayake, S.D., Feria, L., Kundu, S., Baber, A.E., Graciani, J., Vidal, A.B., Agnoli, S., Evans, J., Chang, R., Axnanda, S., Liu, Z., Sanz, J.F., Liu, P., Rodriguez, J.A., and Stacchiola, D.J., Angew. Chem., 2013, vol. 52, p. 5101.

    Article  CAS  Google Scholar 

  15. Wei, Y., Wu, Q., **ong, J., Li, J., Liu, J., and Zhao, Z., Catal. Today, 2019, vol. 327, p. 143.

    Article  CAS  Google Scholar 

  16. Grabchenko, M.V., Mikheeva, N.N., Mamontov, G.V., Salaev, M.A., Liotta, L.F., and Vodyankina, O.V., Catalysts, 2018, vol. 8, no. 7, 285.

    Article  CAS  Google Scholar 

  17. Mamontov, G.V., Grabchenko, M.V., Sobolev, V.I., Zaikovskii, V.I., and Vodyankina, O.V., Appl. Catal., A, 2016, vol. 528, p. 161.

  18. Grabchenko, M.V., Mamontov, G.V., Zaikovskii, V.I., and Vodyankina, O.V., Kinet. Catal., 2017, vol. 58, no. 5, p. 642.

    Article  CAS  Google Scholar 

  19. Grabchenko, M.V., Mamontov, G.V., Zaikovskii, V.I., Parola, V.La, Liotta, L.F., and Vodyankina, O.V., Catal. Today, 2018 (in press). https://doi.org/10.1016/j.cattod.2018.05.014

  20. Yamazaki, K., Kayama, T., Dong, F., and Shinjoh, H., J. Catal., 2011, vol. 282, p. 289.

    Article  CAS  Google Scholar 

  21. Liu, S., Wu, X., Liu, W., Chen, W., Ran, R., Li, M., and Weng, D., J. Catal., 2016, vol. 337, p. 188.

    Article  CAS  Google Scholar 

  22. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., and Kenneth, S.W., Pure Appl. Chem., 2015, vol. 87, p. 1052.

    Article  CAS  Google Scholar 

  23. Mikheeva, N.N., Zaikovskii, V.I., and Mamontov, G.V., Microporous Mesoporous Mater., 2019, vol. 277, p. 10.

    Article  CAS  Google Scholar 

  24. Dutov, V.V., Mamontov, G.V., Zaikovskii, V.I., and Vodyankina, O.V., Catal. Today, 2016, vol. 278, p. 150.

    Article  CAS  Google Scholar 

  25. Dutov, V.V., Mamontov, G.V., Zaikovskii, V.I., Liotta, L.F., and Vodyankina, O.V., Appl. Catal., B, 2018, vol. 221, p. 598.

    Article  CAS  Google Scholar 

  26. Fino, D., Bensaid, S., Piumetti, M., and Russo, N., Appl. Catal., A, 2016, vol. 509, p. 75.

  27. Kibis, L.S., Svintsitskiy, D.A., Kardash, T.Yu., Slavinskaya, E.M., Gotovtseva, E.Yu., Svetlichnyi, V.A. and Boronin, A.I., Appl. Catal., A, 2019, vol. 570, p. 51.

  28. Zhang, J., Li L., Huang, X., and Li, G., J. Mater. Chem., 2012, vol. 22, p. 10480.

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation (grant no. 18‑73-10109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Mamontov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadlivskaya, M.V., Mikheeva, N.N., Zaikovskii, V.I. et al. Influence of Preparation Method of Ag–CeO2 Catalysts on Their Structure and Activity in Soot Combustion. Kinet Catal 60, 432–438 (2019). https://doi.org/10.1134/S0023158419040141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158419040141

Keywords:

Navigation