Log in

Algorithms for Robust Inversion of Dynamical Systems

  • CONTROL THEORY
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

A new methodology for solving inverse dynamics problem is developed. The methodology is based on using a mathematical model of a dynamical system and robust stabilization methods for a system under uncertainty.

Most exhaustively the theory is described for linear finite-dimensional time-invariant scalar systems and multiple-input multiple-output systems.

The study shows that with this approach, the zero dynamics of the original system is of crucial significance. This dynamics, if exists, is assumed to be exponentially stable.

It is established that zero-dynamics, relative order, and the corresponding equations of motion cannot be defined correctly in multiple-input multiple-output systems. For correct inverse transformation of the solution of the problem, additional assumptions have to be introduced, which generally limits the inverse system category.

Special attention is given to the synthesis of elementary (minimal) inverters, i.e., least-order dynamical systems that solve the transformation problem.

It is also established that the inversion methods sustain the efficiency with finite parameter variations in the initial system as well as with uncontrolled exogenous impulses having no impact on the system’s internal dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Notes

  1. The relative order of system (1.1) is an integer \(r \) such that the following conditions are met: \(cb=0 \), \(cAb=0,\ldots ,cA^{r-2}b=0 \), \(cA^{r-1}b\ne 0\). In this case, all derivatives of the output \(w=cz\) by virtue of the system up to order \((r-1)\) do not depend on \(\xi \) explicitly, while the \(r \)th derivative depends on \(\xi \) explicitly; i.e., \(w^{(r)}= cA^{r}z + cA^{r-1}b\xi \). It can be shown that \(r=n-m \).

  2. From now on, any function \(f \) with subscript \(T \), i.e., \(f_T \), denotes the filtering operation as in (1.14).

  3. The matrix norm is consistent with the vector norm.

  4. Indeed, if the transfer function of the original system has the form \(W(s)=\frac {\beta (s)}{\alpha ( s)}\), where \(\beta =\mathrm {const} \ne 0\), then with the specified choice of spectrum \(A_l \) one has the equality \(cA_l^{-1}b=\frac {(\beta )^{n+1}}{(\lambda _1\cdot \ldots \cdot \lambda _n)}\ne 0 \).

  5. This can always be achieved by normalizing the input or output.

REFERENCES

  1. Andreev, Yu.N., Upravlenie konechnomernymi lineinymi ob”ektami (Control of Finite-Dimensional Linear Plants), Moscow: Nauka, 1976.

    Google Scholar 

  2. Atamas’, E.I., Il’in, A.V., and Fomichev, V.V., Inversion of vector delay systems, Differ. Equations, 2013, vol. 49, no. 11, pp. 1329–1335.

    Article  MathSciNet  Google Scholar 

  3. Atamas’, E.I., Reconstruction of a bounded solution of a linear functional equation, Differ. Equations, 2017, vol. 53, no. 11, pp. 1512–1514.

    Article  MathSciNet  Google Scholar 

  4. Il’in, A.V., Atamas’, E.I., and Fomichev, V.V., On the problem of finding a bounded solution of unstable differential equation, Differ. Equations, 2017, vol. 53, no. 1, pp. 109–114.

    Article  MathSciNet  Google Scholar 

  5. Fomichev, V.V., Atamas’, E.I., and Rogovskiy, A.I., On reduction of time-delay systems to a form with relative degree, Differ. Equations, 2022, vol. 58, no. 3, pp. 424–432.

    Article  MathSciNet  Google Scholar 

  6. Atamas’, E.I. and Il’in, A.V., On the reduction of systems with incommensurable delays to a form with isolated zero dynamics, Tr. Inst. Mat. Mekh. UrO RAN, 2022, vol. 28, no. 3, pp. 30–37.

    Google Scholar 

  7. Fomichev, V.V. and Vysotskii, A.O., Cascade observer design method for systems with uncertainty, Differ. Equations, 2018, vol. 54, no. 11, pp. 1509–1516.

    Article  MathSciNet  Google Scholar 

  8. Fomichev, V.V. and Vysotskii, A.O., Stability criterion and sharp estimates for the “super-twisting” algorithm, Differ. Equations, 2023, vol. 59, no. 2, pp. 260–264.

    Article  MathSciNet  Google Scholar 

  9. Daletskii, Yu.L. and Krein, M.G., Ustoichivost’ reshenii differentsial’nykh uravnenii v banakhovom prostranstve (Stability of Solutions to Differential Equations in Banach Space), Moscow: Nauka, 1970.

    Google Scholar 

  10. Emel’yanov, S.V. and Korovin, S.K., Novye tipy obratnoi svyazi. Upravlenie pri neopredelennosti (New Types of Feedback. Control under Uncertainty), Moscow: Nauka, 1997.

    Google Scholar 

  11. Emel’yanov, S.V. and Korovin, S.K., Sbornik Mat. model.: Problemy i rezul’taty (Collect. Works Math. Model.: Problems and Results), Moscow: Nauka, 2003, pp. 12–35.

  12. Emel’yanov, S.V., Il’in, A.V., and Fomichev, V.V., Synthesis of minimum-order robust inverters, Differ. Equations, 2009, vol. 45, no. 4, pp. 591–601.

    Article  MathSciNet  Google Scholar 

  13. Il’in, A.V., Korovin, S.K., and Fomichev, V.V., Positional robust inversion of nonlinear dynamical systems, in Nelineinaya dinamika i upravlenie. Vyp. 3. Sbornik statei (Nonlinear Dynamics and Control. Issue 3. Collection of Articles), Emel’yanov, S.V. and Korovin, S.K., Eds., Moscow: Fizmatlit, 2003, pp. 5–18.

  14. Il’in, A.V., Korovin, S.K., and Fomichev, V.V., Algorithms for robust inversion of vector linear systems, in Nelineinaya dinamika i upravlenie. Vyp. 4. Sbornik statei (Nonlinear Dynamics and Control. Issue 4. Collection of Articles), Emel’yanov, S.V. and Korovin, S.K., Eds., Moscow: Fizmatlit, 2003, pp. 17–22.

  15. Il’in,A.V., Nosov, A.P., and Fomichev, V.V., Inversion of systems with unstable zero dynamics, in Nelineinaya dinamika i upravlenie. Vyp. 2. Sbornik statei (Nonlinear Dynamics and Control. Issue 2. Collection of Articles), Emel’yanov, S.V. and Korovin, S.K., Eds., Moscow: Fizmatlit, 2002, pp. 33–40.

  16. Il’in, A.V., Korovin, S.K., and Fomichev, V.V., Algorithms for inversion of linear scalar dynamical systems: Controlled model method, Differ. Equations, 1997, vol. 33, no. 3, pp. 326–336.

    MathSciNet  Google Scholar 

  17. Il’in, A.V., Korovin, S.K., and Fomichev, V.V., Algorithms for inversion of linear control systems, Differ. Equations, 1998, vol. 34, no. 6, pp. 741–747.

    MathSciNet  Google Scholar 

  18. Il’in, A.V., Korovin, S.K., and Fomichev, V.V., Robust inversion of linear control systems, Dokl. Akad. Nauk. Teor. Upr., 1998, vol. 356, no. 2, pp. 121–123.

    Google Scholar 

  19. Il’in, A.V., Korovin, S.K., and Fomichev, V.V., Robust inversion of vector systems, Differ. Equations, 1998, vol. 34, no. 11, pp. 1478–1486.

    MathSciNet  Google Scholar 

  20. Il’in, A.V., Korovin, S.K., and Fomichev, V.V., Asymptotic observers with discontinuous control for scalar linear indeterminate systems, Differ. Equations, 2005, vol. 41, no. 10, pp. 1310–1317.

    MathSciNet  Google Scholar 

  21. Il’in, A.V., Korovin, S.K., and Fomichev, V.V., Inversion of controlled dynamical systems, Vestn. MGU. Ser. 15. Vychisl. Mat. Kibern., 2006, no. 3, pp. 49–58.

  22. Il’in, A.V., Korovin, S.K., and Fomichev, V.V., On the equations and properties of zero dynamics of linear controlled stationary systems, Differ. Equations, 2006, vol. 42, no. 12, pp. 1696–1706.

    Article  MathSciNet  Google Scholar 

  23. Il’in, A.V., Korovin, S.K., and Fomichev, V.V., Asymptotic observers for bilinear systems with vector output, Differ. Equations, 2008, vol. 44, no. 5, pp. 632–637.

    Article  MathSciNet  Google Scholar 

  24. Il’in, A.V., Korovin, S.K., and Fomichev, V.V., Methods for constructing observers for linear dynamical systems under uncertainty, Proc. Steklov Inst. Math., 2008, vol. 262, pp. 80–95.

    Article  MathSciNet  Google Scholar 

  25. Il’in, A.V., Korovin, S.K., and Fomichev, V.V., Synthesis of minimal linear stabilizers, Differ. Equations, 2009, vol. 45, no. 5, pp. 694–703.

    Article  MathSciNet  Google Scholar 

  26. Il’in, A.V., Korovin, S.K., Fomichev, V.V., and Khlavenka, A., Synthesis of asymptotic observers for linear vector indeterminate systems, Differ. Equations, 2005, vol. 41, no. 1, pp. 74–83.

    Article  MathSciNet  Google Scholar 

  27. Il’in, A.V., Korovin, S.K., Fomichev, V.V., and Khlavenka, A., Observers for linear dynamical systems with indeterminacy, Differ. Equations, 2005, vol. 41, no. 11, pp. 1517–1531.

    Article  MathSciNet  Google Scholar 

  28. Il’in, A.V. and Fomichev, V.V., Algorithms for inverting control systems with structured nonlinearity, Vestn. MGU. Ser. 15. Vychisl. Mat. Kibern., 1999, no. 1, pp. 44–48.

  29. Il’in, A.V., Atamas’, E.I., and Fomichev, V.V., Metody robastnogo obrashcheniya dinamicheskikh sistem (Methods for Robust Inversion of Dynamical Systems), Moscow: Fizmatlit, 2009.

    Google Scholar 

  30. Il’in, A.V., Korovin, S.K., and Fomichev, V.V., Inversion of linear delay dynamical systems, Differ. Equations, 2012, vol. 48, no. 3, pp. 410–418.

    Article  MathSciNet  Google Scholar 

  31. Il’in, A.V., Atamas’, E.I., and Fomichev, V.V., Inversion of MIMO systems with unstable zero dynamics, Dokl. Math., 2017, vol. 95, no. 2, pp. 190–193.

    Article  MathSciNet  Google Scholar 

  32. Il’in, A.V., Atamas’, E.I., and Fomichev, V.V., On reduction of systems with delay to a form with isolation of zero dynamics, Dokl. Math., 2018, vol. 97, no. 3, pp. 203–206.

    Article  Google Scholar 

  33. Il’in, A.V., Atamas’, E.I., and Fomichev, V.V., Inversion of hyperoutput time-delay systems, Dokl. Math., 2019, vol. 99, no. 1, pp. 113–116.

    Article  MathSciNet  Google Scholar 

  34. Kalman, R.E., Falb, P.L., and Arbib, M.A., Topics in Mathematical System Theory, New York–San Francisco–St. Louis–Toronto–London–Sydney: McGraw-Hill, 1969. Translated under the title: Ocherki po matematicheskoi teorii sistem, Moscow: URSS, 2010.

    Google Scholar 

  35. Korovin, S.K., Il’in, A.V., Medvedev, I.S., and Fomichev, V.V., On the theory of functional observers and stabilizers of a given order, Dokl. Akad. Nauk. Teor. Upr., 2006, vol. 409, no. 5, pp. 601–605.

    MathSciNet  Google Scholar 

  36. Korovin, S.K., Il’in, A.V., Fomichev, V.V., and Khlavenka, A., Asymptotic observers of the state of uncertain vector linear systems, Dokl. Akad. Nauk. Teor. Upr., 2004, vol. 396, no. 4, pp. 469–473.

    MathSciNet  Google Scholar 

  37. Korovin, S.K., Il’in, A.V., and Fomichev, V.V., Controlled model method in problems of inversion of dynamical systems, Dokl. Akad. Nauk. Teor. Upr., 1997, vol. 354, no. 2, pp. 171–173.

    Google Scholar 

  38. Korovin, S.K., Il’in, A.V., and Fomichev, V.V., On one canonical form of vector control systems, Dokl. Akad. Nauk. Teor. Upr., 2007, vol. 414, no. 3, pp. 320–324.

    Google Scholar 

  39. Korovin, S.K., Il’in, A.V., and Fomichev, V.V., Zero dynamics of linear vector time-invariant systems, Dokl. Akad. Nauk. Teor. Upr., 2007, vol. 414, no. 5, pp. 598–604.

    MathSciNet  Google Scholar 

  40. Korovin, S.K. and Fomichev, V.V., Nablyudateli sostoyaniya dlya lineinykh sistem s neopredelennost’yu (State Observers for Linear Systems with Uncertainty), Moscow: Fizmatlit, 2007.

    Google Scholar 

  41. Korovin, S.K., Fomichev, V.V., and Medvedev, I.S., Synthesis of minimal functional observers, Dokl. Akad. Nauk. Teor. Upr., 2005, vol. 404, no. 3, pp. 316–320.

    Google Scholar 

  42. Korovin, S.K., Fomichev, V.V., and Medvedev, I.S., Minimum order functional observers, in Nelineinaya dinamika i upravlenie. Vyp. 5. Sbornik statei (Nonlinear Dynamics and Control. Issue 5. Collection of Articles), Emel’yanov, S.V. and Korovin, S.K., Eds., Moscow: Fizmatlit, 2006, pp. 51–70.

  43. Korovin, S.K., Medvedev, I.S., and Fomichev, V.V., Functional observers for linear uncertain time-invariant dynamical systems, Dokl. Akad. Nauk. Teor. Upr., 2006, vol. 411, no. 1, pp. 316–320.

    Google Scholar 

  44. Krasnoshchechenko, V.I. and Krishchenko, A.P., Nelineinye sistemy. Geometricheskie metody analiza i sinteza (Nonlinear Systems. Geometric Methods of Analysis and Synthesis), Moscow: Izd. MGTU im. N.E. Baumana, 2005.

    Google Scholar 

  45. Krut’ko, P.D., Obratnye zadachi dinamiki upravlyaemykh sistem. Lineinye modeli (Inverse Problems of Dynamics of Controlled Systems. Linear Models), Moscow: Nauka, 1988.

    Google Scholar 

  46. Myshkis, A.D., Lineinye differentsial’nye uravneniya s zapazdyvayushchim argumentom (Linear Differential Equations with Retarded Argument), Moscow: Gostekhizdat, 1951.

    Google Scholar 

  47. Osipov, Yu.S. and Kryazhimskii, A.V., Izv. Akad. Nauk SSSR. Tekh. Kibern., 1983, vol. 269, no. 2, pp. 51–60.

  48. Osipov, Yu.S. and Kryazhimskii, A.V., Izv. Akad. Nauk SSSR. Tekh. Kibern., 1983, vol. 269, no. 3, pp. 552–556.

  49. Smagina, E.M., Voprosy analiza lineinykh mnogomernykh ob”ektov s ispol’zovaniem ponyatiya nulya sistemy (Questions of Analysis of Linear Multidimensional Plants Using the Concept of System’s Zero), Tomsk: Izd. Tomsk. Univ., 1990.

    Google Scholar 

  50. Tikhonov, A.N. and Arsenin, V.Ya., Metody resheniya nekorrektnykh zadach (Methods for Solving Ill-Posed Problems), Moscow: Nauka, 1979.

    Google Scholar 

  51. Utkin, V.N., Skol’zyashchie rezhimy v zadachakh stabilizatsii i upravleniya (Sliding Modes in Stabilization and Control Problems), Moscow: Nauka, 1981.

    Google Scholar 

  52. Fomichev, V.V. and Medvedev, I.S., Construction of functional observers for indeterminate systems, Differ. Uravn., 2004, vol. 40, no. 8, pp. 1146–1147.

    Google Scholar 

  53. El’sgol’ts, L.E. and Norkin, S.B., Vvedenie v teoriyu differentsial’nykh uravnenii s otklonyayushchimsya argumentom (Introduction to the Theory of Differential Equations with Deviating Argument), Moscow: Nauka, 1971.

    Google Scholar 

  54. Aboutalib, A.O., Murphy, M.S., and Silverman, L.M., Digital restoration of images degraded by general motion blurs, IEEE Trans. Autom. Control, 1977, vol. 22, pp. 294–302.

    Article  Google Scholar 

  55. Antsaklis, P.J., Stable proper \(N \)th-order inverses, IEEE Trans. Autom. Control, 1978, vol. 23, pp. 1104–1106.

  56. Delay Differential Equations and Applications, Arino, O., Hbid, M.L., and Ait Dads, E., Eds., Dordrecht: Springer, 2006.

  57. R. and K., L., Differential Difference Equations, New York: Academic Press, 1963.

    Google Scholar 

  58. Birta, L.G. and Mufti, I.H., Some results on an inverse problem in multivariable systems, IEEE Trans. Autom. Control, 1967, vol. 12, pp. 99–101.

    Article  MathSciNet  Google Scholar 

  59. Brewer, J.W., Bunce, J.W., and Van Vleck, F.S., Linear Systems over Commutative Rings, New York: Marcel Dekker, 1986.

    Google Scholar 

  60. Broussard, J.R., The generalized state space representation of the inverse of linear systems, IEEE Trans. Autom. Control, 1979, vol. 24, pp. 784–785.

    Article  Google Scholar 

  61. Chizeck, H.J., Inverses of finite group systems, IEEE Trans. Autom. Control, 1978, vol. 23, pp. 66–70.

    Article  MathSciNet  Google Scholar 

  62. Conte, G. and Perdon, A.M., An Algebraic Notion of Zeros for Systems over Rings, Berlin–Heidelberg: Springer, 1984, pp. 166–182.

  63. Conte, G. and Perdon, A.M., Systems over rings: Geometric theory and applications, Annu. Rev. Control, 2000, vol. 24, pp. 113–124.

    Article  Google Scholar 

  64. Conte, G. and Perdon, A.M., Invertibility inversion for systems over rings applications to delay differential systems, in Decis. Control, 2000. Proc. 39th IEEE Conf., 2000, vol. 3, pp. 2817–2822.

  65. Conte, G., Perdon, A. M., and Moog Claude H., Inversion Tracking Problems for Time Delay Linear Systems, Berlin–Heidelberg: Springer, 2007, pp. 267–284.

  66. Davison, E.J., The steady-state invertibility and feedforward control of linear time-invariant systems, IEEE Trans. Autom. Control, 1976, vol. 21, pp. 529–534.

    Article  MathSciNet  Google Scholar 

  67. Emre Erol and Hüseyin Özay, Invertibility criteria for linear multivariable systems, IEEE Trans. Autom. Control, 1974, vol. 19, pp. 609–610.

  68. Emre Erol and Silverman, L.M., Minimal dynamic inverses for linear systems with arbitrary initial states, IEEE Trans. Autom. Control, 1976, vol. 21, pp. 766–769.

    Article  MathSciNet  Google Scholar 

  69. Emre Erol, Silverman, L.M., and Glover, K., Generalized dynamic covers for linear systems with applications to deterministic identification and realization problems, IEEE Trans. Autom. Control, 1977, vol. 22, pp. 26–35.

    Article  MathSciNet  Google Scholar 

  70. Hale, J.K., Theory of Functional Differential Equations, New York: Springer-Verlag, 1977.

    Book  Google Scholar 

  71. Hermida-Alonso, J.A., On linear Algebra over Commutative Rings, vol. 3 of H Book of Algebra, Amsterdam: North-Holland, 2003, pp. 3–61.

  72. Freund, E., Design of time-variable multivariable systems by decoupling and by the inverse, IEEE Trans. Autom. Control, 1971, vol. 16, pp. 183–185.

    Article  MathSciNet  Google Scholar 

  73. Godbole, S.S. and Smith, C.F., A new control approach using the inverse system, IEEE Trans. Autom. Control, 1972, vol. 17, pp. 698–702.

    Article  Google Scholar 

  74. Jezek, J., Rings of skew polynomials in algebraical approach to control theory, Kybernetika, 1996, vol. 32, no. 1, pp. 63–80.

    MathSciNet  Google Scholar 

  75. Kader Zohra, Zheng Gang, and Barbot, J.-P., Left inversion of nonlinear time delay system, 53rd IEEE Conf. Decis. Control, (Los Angeles, California, USA, December 15–17, 2014), pp. 469–474.

  76. Gu, K., Kharitonov, V.L., and Chen, J., Stability of Time-Delay Systems, Boston: Birkhäuser, 2003.

  77. Isidori, A., Nonlinear Control Systems, London: Springer-Verlag, 1995.

    Book  Google Scholar 

  78. Kamen, E.W., Lectures on algebraic system theory: Linear systems over rings, NASA Contract. Rep. 3016, 1978.

  79. Kamen, E.W., Linear Systems Over Rings: From R. E. Kalman to the Present, Berlin–Heidelberg: Springer, 1991, pp. 311–324.

  80. Kolmanovskii, V.B. and Myshkis, A.D., Introduction to the Theory and Applications of Functional Differential Equations, Dordrecht: Kluwer Academy, 1999.

    Book  Google Scholar 

  81. Topics in Time Delay Systems. Analysis, Algorithms, Control, Loiseau, J.J., Michiels, W., Niculescu, S.-I., and Siphani, R., Eds. New York: Springer-Verlag, 2009.

  82. Luenberger, D.G., Determining the state of linear system with observers of low dynamic order, PhD Dissertation, Stanford University, 1963.

  83. Luenberger, D.G., Observers for multivariable systems, IEEE Trans. Autom. Control, 1966, vol. 11, pp. 190–197.

    Article  Google Scholar 

  84. Luenberger, D.G., Canonical forms for linear multivariable systems, IEEE Trans. Autom. Control, 1967, vol. 12, pp. 290–293.

    Article  MathSciNet  Google Scholar 

  85. Mayne, D.Q., On the calculation of pseudoinverses, IEEE Trans. Autom. Control, 1969, vol. 14, pp. 204–205.

  86. Michiels, W. and Niculescu, S.-I., Stability Stabilization of Time-Delay Systems, SIAM, 2007.

  87. Moylan, P.J., Stable inversion of linear systems, IEEE Trans. Autom. Control, 1977, vol. 22, pp. 74–78.

    Article  MathSciNet  Google Scholar 

  88. Nazaroff, G.J., Inverse differential-delay systems, IEEE Trans. Autom. Control, 1974, vol. 19, pp. 87–88.

    Article  MathSciNet  Google Scholar 

  89. Nijmeijer, H. and Vander Schaft, A., Nonlinear Dynamical Control Systems, Berlin: Springer-Verlag, 1990.

  90. Lee, E.B. and Olbrot, A., Observability related structural results for linear hereditary systems, Int. J. Control, 1981, vol. 34, no. 6, pp. 1061–1078.

    Article  MathSciNet  Google Scholar 

  91. O’Reilly, J., Observers for Linear Systems, London: Academic Press, 1983.

    Google Scholar 

  92. Orner, P.A., Construction of inverse systems, IEEE Trans. Autom. Control, 1972, vol. 17, pp. 151–153.

    Article  MathSciNet  Google Scholar 

  93. Owens, D.H., Large-scale systems analysis using approximate inverse models, IEEE Trans. Autom. Control, 1980, vol. 25, pp. 328–330.

    Article  MathSciNet  Google Scholar 

  94. Porter, W.A., Decoupling of and inverses for time-varying linear systems, IEEE Trans. Autom. Control, 1969, vol. 14, pp. 378–380.

    Article  MathSciNet  Google Scholar 

  95. Porter, W.A., An algorithm for inverting linear dynamic systems, IEEE Trans. Autom. Control, 1969, vol. 14, pp. 702–704.

    Article  MathSciNet  Google Scholar 

  96. Rebhuhn, D., Invertibility of \(C^{\infty } \) multivariable input-output systems, IEEE Trans. Autom. Control, 1980, vol. 25, pp. 207–212.

    Article  MathSciNet  Google Scholar 

  97. Resondek, W. and Nijmeijer, H., On local right-invertibility of nonlinear control systems, in Control Theory and Advanced Technology, MITA-PRESS, 1988, vol. 4, no. 3, pp. 325–348.

  98. Richard, J.P., Time-delay systems: An overview of some recent advances and open problems, Automatica, 2003, vol. 39, pp. 1667–1694.

    Article  MathSciNet  Google Scholar 

  99. Ronald, M., Hirschorn invertibility of multivariable nonlinear control systems, IEEE Trans. Autom. Control, 1979, vol. 24, pp. 855–865.

    Article  Google Scholar 

  100. Rosenbrock, H.H., State-Space and Multivariable Theory, London: Nelson, 1970.

    Google Scholar 

  101. Rosenbrock, H.H., The zeros of a system, Int. J. Control, 1973, vol. 18, no. 2, pp. 297–299.

    Article  Google Scholar 

  102. Sain, M.K. and Massey, J.L., Invertibility of linear time-invariant dynamical systems, IEEE Trans. Autom. Control, 1969, vol. 14, pp. 141–149.

    Article  MathSciNet  Google Scholar 

  103. Silverman, L.M., Properties and application of inverse systems, IEEE Trans. Autom. Control, 1968, vol. 13, pp. 436–437.

    Article  MathSciNet  Google Scholar 

  104. Silverman, L.M., Inversion of multivariable linear systems, IEEE Trans. Autom. Control, 1969, vol. 14, pp. 270–276.

    Article  MathSciNet  Google Scholar 

  105. Silverman, L.M., Decoupling with state feedback and precompensation, IEEE Trans. Autom. Control, 1970, vol. 15, pp. 487–489.

    Article  MathSciNet  Google Scholar 

  106. Singh, S.N., Decoupling of invertible nonlinear systems with state feedback and precompensation, IEEE Trans. Autom. Control, 1980, vol. AC-25, no. 6, pp. 1237–1239.

    Article  Google Scholar 

  107. Singh, S.N., A modified algorithm for inevitability in nonlinear systems, IEEE Trans. Autom. Control, 1981, vol. AC-26, no. 2, pp. 595–598.

    Article  Google Scholar 

  108. Singh, S.Pal., A note on inversion of linear systems, IEEE Trans. Autom. Control, 1970, vol. 15, pp. 492–493.

    Article  MathSciNet  Google Scholar 

  109. Sogo Takuya and Adachi Norihiko, A limiting property of the inverse of sampled-data systems on a finite-time interval, IEEE Trans. Autom. Control, 2001, vol. 46, pp. 761–765.

    Article  MathSciNet  Google Scholar 

  110. Sontag, E.D., On linear systems and noncommutative rings, Math. Syst. Theory, 1975, vol. 9, no. 4, pp. 327–344.

    Article  MathSciNet  Google Scholar 

  111. Sontag, E.D., Linear systems over commutative rings: A (partial) updated survey, in Control Science Technology for the Progress of Society (Kyoto, 1981), Laxenburg: IFAC, 1982, vol. 1, pp. 325–330.

  112. Tsui, C.C., A new design approach to unknown input observers, IEEE Trans. Autom. Control, 1996, vol. 41, no. 3, pp. 464–467.

    Article  MathSciNet  Google Scholar 

  113. Vidyasagar, M., Casual systems and feedforward loops, IEEE Trans. Autom. Control, 1971, vol. 16, p. 209.

    Article  Google Scholar 

  114. Wang Shih-Ho and Davison, E.J., A minimization algorithm for the design of linear multivariable systems, IEEE Trans. Autom. Control, 1973, vol. 18, pp. 220–225.

    Article  MathSciNet  Google Scholar 

  115. Wang, S.H. and Davison, E.J., A new invertibility criterion for linear multivariable systems, IEEE Trans. Autom. Control, 1973, vol. 18, pp. 538–539.

    Article  MathSciNet  Google Scholar 

  116. Wei Lin, Global robust stabilization of minimum-phase nonlinear systems with uncertainty, Automatica, 1997, vol. 33, no. 3, pp. 453–462.

    Article  MathSciNet  Google Scholar 

  117. Watanabe, K., Finite spectrum assignment observer for multivariable systems with commensurate delays, IEEE Trans. Autom. Control, 1986, vol. 31, no. 6, pp. 543–550.

    Article  MathSciNet  Google Scholar 

  118. Willems, J.C., In control, almost from the beginning until the day after tomorrow, Eur. J. Control, 2007, vol. 13, no. 1, pp. 71–81.

    Article  MathSciNet  Google Scholar 

  119. Willsky, A.S., On the invertibility of linear systems, IEEE Trans. Autom. Control, 1974, vol. 19, pp. 272–274.

    Article  MathSciNet  Google Scholar 

  120. **a **aohua, Marquez, L.A., Zagalak, P., and Moog, ClaudeH., Analysis of nonlinear time-delay systems using modules over non-commutative rings, Automatica, 20002, vol. 38, no. 9, pp. 1549–1555.

    Article  MathSciNet  Google Scholar 

  121. Fu-Min Yuan, Minimal dimension inverses of linear sequential circuits, IEEE Trans. Autom. Control, 1975, vol. 20, pp. 42–52.

    Article  MathSciNet  Google Scholar 

  122. Zak, S.H., On the stabilization and observation of nonlinear uncertain dynamic control, IEEE Trans. Autom. Control, 1990, vol. 35, no. 5, pp. 604–607.

    Article  Google Scholar 

  123. Zhao, Y.D. and Huang, L., Local stabilization of nonlinear systems, in Control Theory and Advanced Technology, MITA-PRESS, 1990, vol. 6, no. 4, pp. 543–557.

  124. Qu, Z. and Dorsey, J., Comments on the Stabilization and Observation of Nonlinear Uncertain Dynamic Control, IEEE Trans. Autom. Control, 1991, vol. 36, no. 6, pp. 1342–1343.

    Article  Google Scholar 

  125. Zhong, Q.-C., Robust Control of Time-Delay Systems, New York: Springer-Verlag, 2006.

    Google Scholar 

Download references

Funding

This work was carried out with financial support from the Ministry of Science and Higher Education of the Russian Federation within the framework of the program of the Moscow Center for Fundamental and Applied Mathematics under agreement no. 075-15-2022-284.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. I. Atamas’, A. V. Il’in or V. V. Fomichev.

Additional information

Translated by V. Potapchouck

CONFLICT OF INTEREST. The authors of this work declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atamas’, E.I., Il’in, A.V., Korovin, S.K. et al. Algorithms for Robust Inversion of Dynamical Systems. Diff Equat 59 (Suppl 2), 73–246 (2023). https://doi.org/10.1134/S001226612314001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001226612314001X

Navigation