Log in

Participation of intracellular and extracellular pH changes in photosynthetic response development induced by variation potential in pumpkin seedlings

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Electrical signals presented in plants by action potential and by variation potential (VP) can induce a reversible inactivation of photosynthesis. Changes in the intracellular and extracellular pH during VP generation are a potential mechanism of photosynthetic response induction; however, this hypothesis requires additional experimental investigation. The purpose of the present work was to analyze the influence of pH changes on induction of the photosynthetic response in pumpkin. It was shown that a burning of the cotyledon induced VP propagation into true leaves of pumpkin seedlings inducing a decrease in the photosynthetic CO2 assimilation and an increase in non-photochemical quenching of fluorescence, whereas respiration was activated insignificantly. The photosynthetic response magnitude depended linearly on the VP amplitude. The intracellular and extracellular concentrations of protons were analyzed using pH-sensitive fluorescent probes, and the VP generation was shown to be accompanied by apoplast alkalization (0.4 pH unit) and cytoplasm acidification (0.3 pH unit). The influence of changes in the incubation medium pH on the non-photochemical quenching of fluorescence of isolated chloroplasts was also investigated. It was found that acidification of the medium stimulated the nonphotochemical quenching, and the magnitude of this increase depended on the decrease in pH. Our results confirm the contribution of changes in intracellular and extracellular pH to induction of the photosynthetic response caused by VP. Possible mechanisms of the influence of pH changes on photosynthesis are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Opritov, V. A., Pyatygin, S. S., and Retivin, V. G. (1991) Bioelectrogenesis in Higher Plants [in Russian], Nauka, Moscow.

    Google Scholar 

  2. Davies, E. (2006) in Plant Electrophysiology. Theory and Methods (Volkov, A. G., ed.) Springer-Verlag, Berlin-Heidelberg-N. Y., pp. 407–422.

  3. Fromm, J., and Lautner, S. (2007) Electrical signals and their physiological significance in plants, Plant Cell Environ., 30, 249–257.

    Article  CAS  PubMed  Google Scholar 

  4. Dziubinska, H. (2003) Ways of signal transmission and physiological role of electrical potential in plants, Acta Soc. Bot. Polon., 72, 309–318.

    Article  Google Scholar 

  5. Felle, H. H., and Zimmermann, M. R. (2007) Systemic signaling in barley through action potentials, Planta, 226, 203–214.

    Article  CAS  PubMed  Google Scholar 

  6. Vodeneev, V. A., Opritov, V. A., and Pyatygin, S. S. (2006) Reversible changes in extracellular pH during action of variation potential in a higher plant Cucurbita pepo, Russ. J. Plant Physiol., 53, 538–545.

    Article  Google Scholar 

  7. Stahlberg, R., and Cosgrove, D. J. (1996) Induction and ionic basis of slow wave potentials in seedlings of Pisum sativum L., Planta, 200, 416–425.

    Article  CAS  PubMed  Google Scholar 

  8. Vodeneev, V. A., Akinchits, E. K., Orlova, L. A., and Sukhov, V. S. (2011) The role of Ca2+, H+, Cl ions in generation of variation potential in pumpkin plant Cucurbita pepo L., Russ. J. Plant Physiol., 58, 974–981.

    Article  CAS  Google Scholar 

  9. Katicheva, L., Sukhov, V., Akinchits, E., and Vodeneev, V. (2014) Ionic nature of burn-induced variation potential in wheat leaves, Plant Cell Physiol., 55, 1511–1519.

    Article  PubMed  Google Scholar 

  10. Sukhov, V., Akinchits, E., Katicheva, L., and Vodeneev, V. (2013) Simulation of variation potential in higher plant cells, J. Membr. Biol., 246, 287–296.

    Article  CAS  PubMed  Google Scholar 

  11. Stahlberg, R., Robert, E., Cleland, R. E., and van Volkenburgh, E. (2006) in Communication in Plants. Neuronal Aspects of Plant Life (Baluska, F., Mancuso, S., and Volkmann, D., eds.) Springer-Verlag, Berlin-Heidelberg, pp. 291–309.

  12. Malone, M. (1994) Wound-induced hydraulic signals and stimulus transmission in Mimosa pudica L., New Phytol., 128, 49–56.

    Article  Google Scholar 

  13. Mancuso, S. (1999) Hydraulic and electrical transmission of wound-induced signals in Vitis vinifera, Aust. J. Plant Physiol., 26, 55–61.

    Article  Google Scholar 

  14. Vodeneev, V., Orlova, A., Morozova, E., Orlova, L., Akinchits, E., Orlova, O., and Sukhov, V. (2012) The mechanism of propagation of variation potentials in wheat leaves, J. Plant Physiol., 169, 949–954.

    Article  CAS  PubMed  Google Scholar 

  15. Pyatygin, S. S., Opritov, V. A., and Vodeneev, V. A. (2008) Signaling role of action potential in higher plants, Russ. J. Plant Physiol., 55, 285–291.

    Article  CAS  Google Scholar 

  16. Stankovic, B., and Davies, E. (1996) Both action potentials and variation potentials induce proteinase inhibitor gene expression in tomato, FEBS Lett., 390, 275–279.

    Article  CAS  PubMed  Google Scholar 

  17. Fisahn, J., Herde, O., Willmitzer, L., and Pena-Cortes, H. (2004) Analysis of the transient increase in cytosolic Ca2+ during the action potential of higher plants with high temporal resolution: requirement of Ca2+ transients for induction of jasmonic acid biosynthesis and PINII gene expression, Plant Cell Physiol., 45, 456–459.

    Article  CAS  PubMed  Google Scholar 

  18. Dziubinska, H., Filek, M., Koscielniak, J., and Trebacz, K. (2003) Variation and action potentials evoked by thermal stimuli accompany enhancement of ethylene emission in distant non-stimulated leaves of Vicia faba minor seedlings, J. Plant Physiol., 160, 1203–1210.

    Article  CAS  PubMed  Google Scholar 

  19. Hlavackova, V., Krchnak, P., Naus, J., Novak, O., Spundova, M., and Strnad, M. (2006) Electrical and chemical signals involved in short-term systemic photosynthetic responses of tobacco plants to local burning, Planta, 225, 235–244.

    Article  CAS  PubMed  Google Scholar 

  20. Fromm, J., and Bauer, T. (1994) Action potentials in maize sieve tubes change phloem translocation, J. Exp. Bot., 45, 463–469.

    Article  Google Scholar 

  21. Filek, M., and Koscielniak, J. (1997) The effect of wounding the roots by high temperature on the respiration rate of the shoot and propagation of electric signal in horse bean seedlings (Vicia faba L. minor), Plant Sci., 123, 39–46.

    Article  CAS  Google Scholar 

  22. Fromm, J., and Fei, H. (1998) Electrical signaling and gas exchange in maize plants of drying soil, Plant Sci., 132, 203–213.

    Article  CAS  Google Scholar 

  23. Pena-Cortes, H., Fisahn, J., and Willmitzer, L. (1995) Signals involved in wound-induced proteinase inhibitor II gene expression in tomato and potato plants, Proc. Natl. Acad. Sci. USA, 92, 4106–4113.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Bulychev, A. A., Kamzolkina, N. A., Luengviriya, J., Rubin, A. B., and Muller, S. C. (2004) Effect of a single excitation stimulus on photosynthetic activity and lightdependent pH banding in Chara cells, J. Membr. Biol., 202, 11–19.

    Article  CAS  PubMed  Google Scholar 

  25. Krupenina, N. A., and Bulychev, A. A. (2007) Action potential in a plant cell lowers the light requirement for non-photochemical energy-dependent quenching of chlorophyll fluorescence, Biochim. Biophys. Acta, 1767, 781–788.

    Article  CAS  PubMed  Google Scholar 

  26. Krupenina, N. A., Bulychev, A. A., Roelfsema, M. R. G., and Schreiber, U. (2008) Action potential in Chara cells intensifies spatial patterns of photosynthetic electron flow and non-photochemical quenching in parallel with inhibition of pH banding, Photochem. Photobiol. Sci., 7, 681–688.

    Article  CAS  PubMed  Google Scholar 

  27. Grams, T. E. E., Lautner, S., Felle, H. H., Matyssek, R., and Fromm, J. (2009) Heat-induced electrical signals affect cytoplasmic and apoplastic pH as well as photosynthesis during propagation through the maize leaf, Plant Cell Environ., 32, 319–326.

    Article  CAS  PubMed  Google Scholar 

  28. Pavlovic, A., Slovakova, L., Pandolfi, C., and Mancuso, S. (2011) On the mechanism underlying photosynthetic limitation upon trigger hair irritation in the carnivorous plant Venus flytrap (Dionaea muscipula Ellis), J. Exp. Bot., 62, 1991–2000.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Sukhov, V., Orlova, L., Mysyagin, S., Sinitsina, J., and Vodeneev, V. (2012) Analysis of the photosynthetic response induced by variation potential in geranium, Planta, 235, 703–712.

    Article  CAS  PubMed  Google Scholar 

  30. Sukhov, V. S., Surova, L. M., Sherstneva, O. N., Rumyantsev, E. A., and Vodeneev, V. A. (2013) Influence of a variation potential on photosynthesis in pumpkin seedlings (Cucurbita pepo L.), Biophysics, 58, 361–365.

    Article  CAS  Google Scholar 

  31. Sukhov, V., Sherstneva, O., Surova, L., Katicheva, L., and Vodeneev, V. (2014) Proton cellular influx as a probable mechanism of variation potential influence on photosynthesis in pea, Plant Cell Environ., 37, 2532–2541.

    Article  CAS  PubMed  Google Scholar 

  32. Sukhov, V., Surova, L., Sherstneva, O., and Vodeneev, V. (2014) Influence of variation potential on resistance of the photosynthetic machinery to heating in pea, Physiol. Plant., 152, 773–783.

    Article  CAS  PubMed  Google Scholar 

  33. Sukhov, V., Surova, L., Sherstneva, O., Katicheva, L., and Vodeneev, V. (2015) Variation potential influence on photosynthetic cyclic electron flow in pea, Front. Plant Sci., 5, 7–6.

    Article  Google Scholar 

  34. Retivin, V. G., Opritov, V. A., and Fedulina, C. B. (1997) Generation of action potential induces preadaptation of Cucurbita pepo L. stem tissues to freezing injury, Russ. J. Plant Physiol., 44, 432–442.

    CAS  Google Scholar 

  35. Retivin, V. G., Opritov, V. A., Lobov, C. A., Tarakanov, S. A., and Khudyakov, V. A. (1999) Changes in the resistance of photosynthesizing cotyledon cells to cooling and heating as induced by the stimulation of the root system with KCl solution, Russ. J. Plant Physiol., 46, 689–696.

    CAS  Google Scholar 

  36. Klughammer, C., and Schreiber, U. (2008) Saturation pulse method for assessment of energy conversion in PS I, PAM Application Notes, 1, 11–14.

    Google Scholar 

  37. Maxwell, K., and Johnson, G. N. (2000) Chlorophyll fluorescence - a practical guide, J. Exp. Bot., 51, 659–668.

    Article  CAS  PubMed  Google Scholar 

  38. Von Caemmerer, S., and Farquhar, G. D. (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves, Planta, 153, 376–387.

    Article  Google Scholar 

  39. Bulychev, A. A., Cherkashin, A. A., Vredenberg, V., Rubin, A. B., Zykov, V. S., and Muller, S. H. (2001) Fluorescence and photosynthetic activity of chloroplasts in acid and alkaline zones of Chara corallina, Russ. J. Plant Physiol., 48, 326–332.

    Article  CAS  Google Scholar 

  40. Tholen, D., and Zhu, X.-G. (2011) The mechanistic basis of internal conductance: a theoretical analysis of mesophyll cell photosynthesis and CO2 diffusion, Plant Physiol., 156, 90–105.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Kim, K., and Portis, A. R., Jr. (2004) Oxygen-dependent H2O2 production by Rubisco, FEBS Lett., 571, 124–128.

    Article  CAS  PubMed  Google Scholar 

  42. Mubarakshina, M. M., and Ivanov, B. N. (2010) The production and scavenging of reactive oxygen species in the plastoquinone pool of chloroplast thylakoid membranes, Physiol. Plant., 140, 103–110.

    Article  CAS  PubMed  Google Scholar 

  43. Mubarakshina-Borisova, M. M., Kozuleva, M. A., Rudenko, N. N., Naydov, I. A., Klenina, I. B., and Ivanov, B. N. (2012) Photosynthetic electron flow to oxygen and diffusion of hydrogen peroxide through the chloroplast envelope via aquaporins, Biochim. Biophys. Acta, 1817, 1314–1321.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Sukhov.

Additional information

Original Russian Text © O. N. Sherstneva, V. A. Vodeneev, L. A. Katicheva, L. M. Surova, V. S. Sukhov, 2015, published in Biokhimiya, 2015, Vol. 80, No. 6, pp. 920–930.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sherstneva, O.N., Vodeneev, V.A., Katicheva, L.A. et al. Participation of intracellular and extracellular pH changes in photosynthetic response development induced by variation potential in pumpkin seedlings. Biochemistry Moscow 80, 776–784 (2015). https://doi.org/10.1134/S0006297915060139

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915060139

Key words

Navigation