Log in

Observations of Tsunami Waves on the Pacific Coast of Russia Originating from the Hunga Tonga–Hunga Ha’apai Volcanic Eruption on January 15, 2022

  • MARINE PHYSICS
  • Published:
Oceanology Aims and scope

Abstract

The Hunga Tonga–Hunga Ha’apai volcanic eruption on January 15, 2022 generated a tsunami that affected the entire Pacific Ocean. Tsunami waves from the event have been generated both by incoming waves from the source area with a long-wave speed in the ocean of ~200–220 m/s, and by an atmospheric wave propagating at a sound speed of ~315 m/s. Such a dual source mechanism created a serious problem and was a real challenge for the Pacific tsunami warning services. The work of the Russian Tsunami Warning Service (Yuzhno-Sakhalinsk) during this event is considered in detail. The tsunami was clearly recorded on the coasts of the Northwest Pacific and in the adjacent marginal seas, including the Sea of Japan, the Sea of Okhotsk, and the Bering Sea. We examined high-resolution records (1-min sampling) of 20 tide gauges and 8 air pressure stations in this region for the period of January 14–17, 2022. On the Russian coast, the highest waves, with a trough-to-crest wave height of 1.3 m, were recorded at Malokurilskoe (Shikotan Island) and Vodopadnaya (southeastern coast of Kamchatka). Using numerical simulation and data analysis methods, we were able to separate oceanic “gravity” tsunami waves from propagating atmospheric pressure waves. In general, we found that on the outer (oceanic) coasts and southern coast of the Sea of Okhotsk, oceanic tsunami waves prevailed, while on the coast of the Sea of Japan, oceanic and atmospheric tsunami waves had similar heights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Notes

  1. Deep-ocean Assessment and Reporting of Tsunamis (DART)—a deep-ocean sensor system deployed by the National Oceanic and Atmospheric Administration (NOAA, USA) along seismically active areas of the Pacific Ocean to monitor tsunami waves.

  2. Pacific Tsunami Warning Center (PTWC = NOAA: https:// www.un-spider.org/noaa-pacific-tsunami-warning-center-ptwc) responsible for the entire Pacific Ocean. Another tsunami center, NOAA National Tsunami Warning Center (NTWC), Palmer, Alaska (https://www.tsunami.gov/?page=history#2), is responsible for the continental United States, Alaska and Canada.

  3. Intergovernmental Coordination Group for the Pacific Tsunami Warning and Mitigation System (ICG/PTWS), formerly ITSU.

  4. SAKT – Sakhalin Time, UTC+11.

  5. At Vodopadnaya station, the height of tsunami waves was also 1.3 m.

  6. We emphasize that when measuring a tsunami with a resolution of 1 min, a height resolution of 1 cm is insufficient and causes serious distortion of the recorded wave spectra. Modern international standards for such equipment require sea level measurements with an accuracy of 0.1 cm.

  7. The only exception is meteotsunamis, for which in some countries, in particular Spain and Croatia, such methods are being developed and a corresponding agency is being created (see, e.g., [54]).

REFERENCES

  1. B. V. Baranov, L. I. Lobkovskii, E. A. Kulikov, et al., “Landslides on the eastern slope of Sakhalin Island as possible tsunami sources,” Dokl. Earth Sci. 449, 354–357 (2013).

    Article  CAS  Google Scholar 

  2. A. I. Zaytsev, E. N. Pelinovsky, G. I. Dolgikh, and S. G. Dolgikh, “Records of disturbances in the Sea of Japan caused by the eruption of Hong-Tonga-Hung-Ha’apai Volcano on January 15, 2022, in the Tonga Archipelago,” Dokl. Earth Sci. 506, 818–823 (2022).

    Article  CAS  Google Scholar 

  3. A. A. Ivanova, E. A. Kulikov, I. V. Fine, and B. V. Baranov, “Generation of a tsunami from the submarine landslide near the east coast of Sakhalin Island,” Moscow Univ. Phys. 73, 234–239 (2018).

    Article  Google Scholar 

  4. H. S. Kim and A. B. Rabinovich, “Tsunami on the northwestern coast of the Sea of Okhotsk,” in Natural Disasters in the Far Eastern Region (Inst. Mar. Geol. Geophys., Yuzhno-Sakhalinsk, 1990), Vol. 1, pp. 206–218.

    Google Scholar 

  5. D. P. Kovalev, P. D. Kovalev, and M. O. Khuzeeva, “Seiches excited by the atmospheric disturbances within the range of the meteotsunami periods nearby the southern part of the Sakhalin Island,” Mor. Gidrofiz. Zh. 36 (4), 437–450 (2020). https://doi.org/10.22449/0233-7584-2020-4-437-450

    Article  Google Scholar 

  6. E. A. Kulikov, A. B. Rabinovich, I. V. Fain, et al., “Tsunami generation by landslides at the Pacific coast of North America and the role of tides,” Oceanology 38 (3), 323–328 (1998).

    Google Scholar 

  7. B. W Levin and M. A. Nosov, Physics of Tsunamis, 2nd Edit. (Springer, 2016).

  8. L. I. Lobkovsky, A. B. Rabinovich, E. A. Kulikov, et al., “The Kuril earthquakes and tsunamis of November 15, 2006, and January 13, 2007: Observations, analysis, and numerical modeling,” Oceanology 49, 166–181 (2009).

    Article  Google Scholar 

  9. T. S. Murty, Seismic Sea Waves: Tsunamis. (Bull. Fisheries Research 198 1977).

  10. D. A. Smirnova and I. P. Medvedev, “Extreme sea level variations in the Sea of Japan caused by the passage of typhoons Maysak and Haishen in September 2020,” Oceanology 63, 623–636 (2023). https://doi.org/10.1134/S0001437023050168

    Article  Google Scholar 

  11. A. Smyshlyaev, Time of Red Fish (Novaya kniga, Petropavlovsk-Kamchatsky, 2003) [in Russian].

  12. S.L. Soloviev and Ch. N. Go, Catalogue of Tsunamis on the Western Shore of the Pacific Ocean. (Can.Transi. Fish. Aquat. Sci. 5077. 1984).

  13. G. V. Shevchenko and T. N. Ivelskaya, Tsunami and Other Dangerous Marine Phenomena in the Ports of the Far Eastern Region of Russia (According to Instrumental Measurements) (Inst. Mar. Geol. Geophys., Far East. Branch Russ. Acad. Sci., Yuzhno-Sakhalinsk, 2013).

    Google Scholar 

  14. G. V. Shevchenko, T. N. Ivelskaya, and V. M. Kaistrenko, “The tsunami of November 5, 1952 in Severo-Kurilsk and its echo in the next 70 years,” Priroda, No. 4, 12–26 (2022).

    Google Scholar 

  15. D. Adam, “Tonga volcano eruption created puzzling ripples in Earth’s atmosphere,” Nature 601 (497) (2022). https://doi.org/10.1038/d41586-022-00127-1

  16. A. Amores, S. Monserrat, M. Marcos, et al., “Numerical simulation of atmospheric Lamb waves generated by the 2022 Hunga-Tonga volcanic eruption,” Geophys. Res. Lett. 49, e2022GL098240 (2022). https://doi.org/10.1029/2022GL098240

  17. M. Brenna, S. J. Cronin, I. E. M. Smith, et al., “Post-caldera volcanism reveals shallow priming of an intra-ocean arc andesitic caldera: Hunga volcano, Tonga, SW Pacific,” Lithos 412–413, 106614 (2022). https://doi.org/10.1016/j.lithos.2022.106614

    Article  CAS  Google Scholar 

  18. M. Carvajal, I. Sepúlveda, A. Gubler, and R. Garreaud, “Worldwide signature of the 2022 Tonga volcanic tsunami,” Geophys. Res. Lett. 49 (6), e2022GL098153 (2022). https://doi.org/10.1029/2022GL098153

  19. C.-H. Chen, X. Zhang, Y.-Y. Sun, et al., “Individual wave propagations in ionosphere and troposphere triggered by the Hunga Tonga–Hunga Ha’apai underwater volcano eruption on 15 January 2022,” Remote Sens. 14 (9) 2022. https://doi.org/10.3390/rs14092179

  20. L. Dengler, B. Uslu, A. Barberopoulou, et al., “The vulnerability of Crescent City, California, to tsunamis generated by earthquakes in the Kuril Islands region of the northwestern Pacific,” Seismol. Res. Lett. 79 (5), 608–619 (2008).

    Article  Google Scholar 

  21. J. Duncombe, “The surprising reach of Tonga’s giant atmospheric waves,” EOS 103 (2022). https://doi.org/10.1029/2022EO220050

  22. M. Ewing and F. Press, “Tide-gage disturbances from the great eruption of Krakatoa,” Trans., Am. Geophys. Union 36 (1), 53–60 (1955).

    Article  Google Scholar 

  23. I. V. Fine and R. E. Thomson, “A wavefront orientation method for precise numerical determination of tsunami travel time,” Nat. Hazards Earth Syst. Sci. 13 (11), 2863–2870 (2013). https://doi.org/10.5194/nhess-13-2863-2013

    Article  Google Scholar 

  24. C. J. R. Garrett, “A theory of the Krakatoa tide gauge disturbances,” Tellus 22, 43–52 (1970).

    Article  Google Scholar 

  25. V. K. Gusiakov, “Global occurrence of large tsunamis and tsunami-like waves within the last 120 years (1900–2019),” Pure Appl. Geophys. 177, 1261–1266 (2020). https://doi.org/10.1007/s00024-020-02437-9

    Article  Google Scholar 

  26. V. K. Gusiakov, “Meteotsunamis at global scale: Problems of event identification, parameterization and cataloguing,” Nat. Hazards 106, 1105–1123 (2021). https://doi.org/10.1007/s11069-020-04230-2

    Article  Google Scholar 

  27. D. Harkrider and F. Press, “The Krakatoa air-sea waves: An example of pulse propagation in coupled systems,” Geophys. J. R. Astron. Soc. 13, 149–159 (1967).

    Article  Google Scholar 

  28. M. Heidarzadeh and A. B. Rabinovich, “Combined hazard of typhoon-generated meteorological tsunamis and storm surges along the coast of Japan,” Nat. Hazards 106 (2), 1639–1672 (2021). https://doi.org/10.1007/s11069-020-04448-0

    Article  Google Scholar 

  29. M. Heidarzadeh, J. Šepić, A. B. Rabinovich, et al., “Meteorological tsunami of 19 March 2017 in the Persian Gulf: Observations and analyses,” Pure Appl. Geophys. 177 (3), 1231–1259 (2020). https://doi.org/10.1007/s00024-019-02263-8

    Article  Google Scholar 

  30. P. Heinrich, A. Gailler, A. Dupont, et al., “Observations and simulations of the meteotsunami generated by the Tonga eruption on 15 January 2022 in the Mediterranean Sea,” Geophys. J. Int. 234 (2), 903–914 (2023).

    Article  Google Scholar 

  31. G. Hu, L. Li, Z. Ren, and K. Zhang, “The characteristics of the 2022 Tonga volcanic tsunami in the Pacific Ocean,” Nat. Hazards Earth Syst. Sci. 23, 675–691 (2023). https://doi.org/10.5194/nhess-23-675-2023

    Article  Google Scholar 

  32. F. Imamura, A. Suppasri, T. Arikawa, et al., “Preliminary observations and impact in Japan of the tsunami caused by the Tonga volcanic eruption on January 15, 2022,” Pure Appl. Geophys. 179 (5) (2022). https://doi.org/10.1007/s00024-022-030xx-x

  33. Pacific Tsunami Warning System: A Half-Century of Protecting the Pacific, 1965–2015, Ed. by L. S. L. Kong, P. K. Dunbar, and N. Arcos (International Tsunami Information Center, Honolulu, 2015).

    Google Scholar 

  34. T. Kubota, T. Saito, and K. Nishida, “Global fast-traveling tsunamis driven by atmospheric Lamb waves on the 2022 Tonga eruption,” Science 377 (6601), 91–94 (2022). https://doi.org/10.1126/science.abo4364

    Article  CAS  Google Scholar 

  35. S. N. Kulichkov, I. P. Chunchuzov, O. E. Popov, et al., “Acoustic-gravity Lamb waves from the eruption of the Hunga-Tonga-Hunga-Hapai Volcano, its energy release and impact on aerosol concentrations and tsunami,” Pure Appl. Geophys. 179 (5) (2022). https://doi.org/10.1007/s00024-022-03046-4

  36. T. M. Kusky, “Déjà vu: Might future eruptions of Hunga Tonga–Hunga Ha’apai volcano be a repeat of the devastating eruption of Santorini, Greece (1650 BC)?” J. Earth Sci. 33 (2), 229–235 (2022). https://doi.org/10.1007/s12583-022-1624-2

    Article  Google Scholar 

  37. P. Lynett, M. McCann, Z. Zhou, et al., “Diverse tsunamigenesis triggered by the Hunga Tonga–Hunga Ha’apai eruption,” Nature 609 (7928), 728–733 (2022). https://doi.org/10.1038/s41586-022-05170-6

    Article  CAS  Google Scholar 

  38. R. S. Matoza, D. Fee, J. D. Assink, et al., “Atmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga,” Science 377 (6601), 95–100 (2022). https://doi.org/10.1126/science.abo7063

    Article  CAS  Google Scholar 

  39. I. P. Medvedev, A. B. Rabinovich, and J. Šepić, “Destructive coastal sea level oscillations generated by Typhoon Maysak in the Sea of Japan in September 2020,” Sci. Rep. 12, 8463 (2022). https://doi.org/10.1038/s41598-022-12189-2

    Article  CAS  Google Scholar 

  40. A. Medvedeva, I. Medvedev, I. Fine, et al., “Local and trans-oceanic tsunamis in the Bering and Chukchi seas based on numerical modeling,” Pure Appl. Geophys. 180, 1639–1659 (2023). https://doi.org/10.1007/s00024-023-03251-9

    Article  Google Scholar 

  41. S. Monserrat, I. Vilibić, and A. B. Rabinovich, “Meteotsunamis: Atmospherically induced destructive ocean waves in the tsunami frequency band,” Nat. Hazards Earth Syst. Sci. 6 (6), 1035–1051 (2006). https://doi.org/10.5194/nhess-6-1035-2006

    Article  Google Scholar 

  42. R. Omira, R. S. Ramalho, J. Kim, et al., “Global Tonga tsunami explained by a fast-moving atmospheric source,” Nature 609 (7928), 734–740 (2022). https://doi.org/10.1038/s41586-022-04926-4

    Article  CAS  Google Scholar 

  43. G. Pararas-Caraynnis, “The tsunami generated from the eruption of the volcano of Santorin in the Bronze Age,” Nat. Hazards 5 (2), 115–123 (1992). https://doi.org/10.1007/BF00127000

    Article  Google Scholar 

  44. E. Pelinovsky, B. H. Choi, A. Stromkov, et al., “Analysis of tide-gauge records of the 1883 Krakatau tsunami,” in Tsunamis: Case Studies and Recent Developments, Ed. by K. Satake (Springer, Dordrecht, 2005), pp. 57–78. https://doi.org/10.1007/1-4020-3331-1_4

    Book  Google Scholar 

  45. F. Press and D. Harkrider, “Air-sea waves from the explosion of Krakatoa,” Science 154, 1325–1327 (1966).

    Article  CAS  Google Scholar 

  46. A. B. Rabinovich, “Twenty-seven years of progress in the science of meteorological tsunamis following the 1992 Daytona Beach event,” Pure Appl. Geophys. 177 (3), 1193–1230 (2020). https://doi.org/10.1007/s00024-019-02349-3

    Article  Google Scholar 

  47. Two 2018 Destructive Indonesian Tsunamis: Palu (Sulawesi) and Anak Krakatau, Ed. by A. B. Rabinovich (Springer, Basel, 2022).

    Google Scholar 

  48. M. T. Ramírez-Herrera, O. Coca, and V. Vargas-Espinosa, “Tsunami effects on the coast of Mexico by the Hunga Tonga–Hunga Ha’apai volcano eruption, Tonga,” Pure Appl. Geophys. 179 (4), 1117–1137 (2022). https://doi.org/10.1007/s00024-022-03017-9

    Article  Google Scholar 

  49. Y. Tanioka, Y. Yamanaka, and T. Nakagaki, “Characteristics of the deep sea tsunami excited offshore Japan due to the air wave from the 2022 Tonga eruption,” Earth, Planets Space 74 (61) (2022). https://doi.org/10.1186/s40623-022-01614-5

  50. D. R. Themens, C. Watson, N. Žagar, et al., “Global propagation of ionospheric disturbances associated with the 2022 Tonga volcanic eruption,” Geophys. Res. Lett. 49, e2022GL098158 (2022). https://doi.org/10.1029/2022GL098158

  51. E. Tsukanova and I. Medvedev, “The observations of the 2022 Tonga-Hunga tsunami waves in the Sea of Japan,” Pure Appl. Geophys. 179 (12), 4279–4299 (2022). https://doi.org/10.1007/s00024-022-03191-w

    Article  Google Scholar 

  52. I. Vilibić, N. Domijan, M. Orlić, et al., “Resonant coupling of a traveling air pressure disturbance with the east Adriatic coastal waters,” J. Geophys. Res.: Oceans 109, C10001 (2004). https://doi.org/10.1029/2004JC002279

    Article  Google Scholar 

  53. I. Vilibić, A. B. Rabinovich, and E. J. Anderson, “Special issue on the global perspective on meteotsunami science: editorial,” Nat. Hazards 106 (2), 1087–1104 (2021). https://doi.org/10.1007/s11069-021-04679-9

    Article  Google Scholar 

  54. I. Vilibić, J. Šepić, A. Rabinovich, and S. Monserrat, “Modern approaches in meteotsunami research and early warning,” Front. Mar. Sci. 3 (57), 1–7 (2016). https://doi.org/10.3389/fmars.2016.00057

    Article  Google Scholar 

  55. R. I. Wilson, A. R. Admire, J. C. Borrero, et al., “Observations and impacts from the 2010 Chilean and 2011 Japanese tsunamis in California (USA),” Pure Appl. Geophys. 170 (6–8), 1127–1147 (2013).

    Article  Google Scholar 

  56. C. J. Wright, N. P. Hindley, M. J. Alexander, et al., “Surface-to-space atmospheric waves from Hunga Tonga–Hunga Ha’apai eruption,” Nature 609, 741–746 (2022). https://doi.org/10.1038/s41586-022-05012-5

    Article  CAS  Google Scholar 

  57. S.-R. Zhang, J. Vierinen, and E. Aa, et al., “Tonga volcanic eruption induced global propagation of ionospheric disturbances via Lamb waves,” Front. Astron. Space Sci. 9 (2022). https://doi.org/10.3389/fspas.2022.871275

Download references

Funding

The study was carried out within the state task of the Shirshov Institute of Oceanology, Russian Academy of Sciences (topic no. FMWE-2024-0018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Medvedev.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work was supported by ongoing institutional funding. No additional grants to carry out or direct thisparticular research were obtained.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medvedev, I.P., Ivelskaya, T.N., Rabinovich, A.B. et al. Observations of Tsunami Waves on the Pacific Coast of Russia Originating from the Hunga Tonga–Hunga Ha’apai Volcanic Eruption on January 15, 2022. Oceanology 64, 163–180 (2024). https://doi.org/10.1134/S0001437024020097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437024020097

Keywords:

Navigation