Log in

Kilowatt-scale tandem CO2 electrolysis for enhanced acetate and ethylene production

  • Article
  • Published:

From Nature Chemical Engineering

View current issue Submit your manuscript

Abstract

The conversion of carbon dioxide (CO2) into valuable chemicals is a key strategy for carbon utilization. Although tandem CO2 electrolysis has shown promise, it has been largely confined to watt-scale studies and larger-scale studies are needed to accelerate commercialization. In this work, we demonstrate a tandem CO2 electrolyzer engineered for the production of multicarbon products, acetate and ethylene, at the kilowatt (kW) scale. Here, from insights gained at the watt scale, we have successfully designed and operated a 1,000 cm2 CO electrolyzer at 0.71 kW and a 500 cm2 CO2 electrolyzer at 0.40 kW. The kW-scale CO electrolyzer stack demonstrated a stable current of 300 A over 125 h, yielding 98 l of 1.2 M acetate at 96% purity. The system exhibited resilience against typical industrial impurities, maintaining high performance. These results mark a crucial advancement in scaling tandem CO2 electrolysis systems toward industrial feasibility. Finally, an experimentally informed techno-economic analysis is offered to provide a pathway for commercially viable tandem CO2 electrolysis at an industrial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Two-step CO2 electrolysis stack for multicarbon chemical production.
Fig. 2: Watt-scale CO2 and CO electrolyzer performance.
Fig. 3: kW-scale two-step CO2 electrolysis.
Fig. 4: Effect of impurity content in CO electrolysis feed gas.
Fig. 5: Techno-economic analysis of tandem CO2 electrolysis.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or Supplementary Information. Source data for Figs. 24 have been included. Additional data related to this paper may be requested from the authors. Source data are provided with this paper.

References

  1. De Luna, P., Hahn, C., Higgins, D., Jaramillo, T. & Sargent, T. H. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science https://doi.org/10.1126/science.aav3506 (2019).

  2. Chen, C., Khosrowabadi Kotyk, J. F. & Sheehan, S. W. Progress toward commercial application of electrochemical carbon dioxide reduction. Chem 4, 2571–2586 (2018).

    Article  CAS  Google Scholar 

  3. Overa, S., Ko, B. H., Zhao, Y. & Jiao, F. Electrochemical approaches for CO2 conversion to chemicals: a journey toward practical applications. Acc. Chem. Res. 55, 638–648 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Rabinowitz, J. A. & Kanan, M. W. The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem. Nat. Commun. 11, 10–12 (2020).

    Article  Google Scholar 

  5. Leonard, M. E., Clarke, L. E., Forner-Cuenca, A., Brown, S. M. & Brushett, F. R. Investigating electrode flooding in a flowing electrolyte, gas-fed carbon dioxide electrolyzer. ChemSusChem 13, 400–411 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Cofell, E. R., Nwabara, U. O., Bhargava, S. S., Henckel, D. E. & Kenis, P. J. A. Investigation of electrolyte-dependent carbonate formation on gas diffusion electrodes for CO2 electrolysis. ACS Appl. Mater. Interfaces 13, 15132–15142 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Jouny, M., Luc, W. & Jiao, F. High-rate electroreduction of carbon monoxide to multi-carbon products. Nat. Catal. 1, 748–755 (2018).

    Article  CAS  Google Scholar 

  9. Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012).

    Article  CAS  Google Scholar 

  10. Shen, H. et al. Asymmetrical C-C coupling for electroreduction of CO on bimetallic Cu-Pd catalysts. ACS Catal. 12, 5275–5283 (2022).

    Article  CAS  Google Scholar 

  11. Ji, Y. et al. Selective CO-to-acetate electroreduction via intermediate adsorption tuning on ordered Cu–Pd sites. Nat. Catal. 5, 251–258 (2022).

    Article  CAS  Google Scholar 

  12. Luc, W. et al. Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate. Nat. Catal. 2, 423–430 (2019).

    Article  CAS  Google Scholar 

  13. Yang, C. et al. Overcoming immiscibility toward bimetallic catalyst library. Sci. Adv. 6, 1–10 (2020).

    CAS  Google Scholar 

  14. Overa, S. et al. Enhancing acetate selectivity by coupling anodic oxidation in carbon monoxide electroreduction. Nat. Catal. 5, 738–745 (2022).

    Article  CAS  Google Scholar 

  15. Crandall, B. S., Overa, S., Shin, H. & Jiao, F. Turning carbon dioxide into sustainable food and chemicals: how electrosynthesized acetate is paving the way for fermentation innovation. Acc. Chem. Res. 56, 1505–1516 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Hann, E. C. et al. A hybrid inorganic–biological artificial photosynthesis system for energy-efficient food production. Nat. Food 3, 461–471 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Fu, X., Zhang, J. & Kang, Y. Electrochemical reduction of CO2 towards multi-carbon products: via a two-step process. React. Chem. Eng. 6, 612–628 (2021).

    Article  CAS  Google Scholar 

  18. Theaker, N. et al. Heterogeneously catalyzed two-step cascade electrochemical reduction of CO2 to ethanol. Electrochim. Acta 274, 1–8 (2018).

    Article  CAS  Google Scholar 

  19. Ozden, A. et al. Cascade CO2 electroreduction enables efficient carbonate-free production of ethylene. Joule 5, 706–719 (2021).

    Article  CAS  Google Scholar 

  20. Jouny, M., Luc, W. W. & Jiao, F. A general techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 57, 2165–2177 (2018).

    Article  CAS  Google Scholar 

  21. Shin, H., Hansen, K. U. & Jiao, F. Techno-economic assessment of low-temperature carbon dioxide electrolysis. Nat. Sustain. 4, 911–919 (2021).

    Article  Google Scholar 

  22. Crandall, B. S. & Jiao, F. Knowledge transfer between liquid- and gas-fed CO2 electrolysis. Chem Catal. 2, 2833–2834 (2022).

    Article  CAS  Google Scholar 

  23. Zhang, P. et al. Chem-bio interface design for rapid conversion of CO2 to bioplastics in an integrated system. Chem 8, 3363–3381 (2022).

    Article  CAS  Google Scholar 

  24. Heenen, H. H. et al. The mechanism for acetate formation in electrochemical CO2 reduction on Cu: selectivity with potential, pH, and nanostructuring. Energy Environ. Sci. 15, 3978–3990 (2022).

    Article  CAS  Google Scholar 

  25. Weekes, D. M., Salvatore, D. A., Reyes, A., Huang, A. & Berlinguette, C. P. Electrolytic CO2 reduction in a flow cell. Acc. Chem. Res. 51, 910–918 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Romiluyi, O., Danilovic, N., Bell, A. T. & Weber, A. Z. Membrane‐electrodeassembly design parameters for optimal CO2 reduction. Electrochem. Sci. Adv. https://doi.org/10.1002/elsa.202100186 (2022).

  27. Jeng, E. & Jiao, F. Investigation of CO2 single-pass conversion in a flow electrolyzer. React. Chem. Eng. 5, 1768–1775 (2020).

    Article  CAS  Google Scholar 

  28. Larrazábal, G. O. et al. Analysis of mass flows and membrane cross-over in CO2 reduction at high current densities in an MEA-type electrolyzer. ACS Appl. Mater. Interfaces 11, 41281–41288 (2019).

    Article  PubMed  Google Scholar 

  29. Cuellar, N. S. R., Scherer, C. & Ka, B. Two-step electrochemical reduction of CO2 towards multi-carbon products at high current densities. J. CO2 Util. 36, 263–275 (2019).

    Article  Google Scholar 

  30. Cave, E. R. et al. Trends in the catalytic activity of hydrogen evolution during CO2 electroreduction on transition metals. ACS Catal. 8, 3035–3040 (2018).

    Article  CAS  Google Scholar 

  31. Lu, X. & Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 6, 6616 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Eren, B. et al. Activation of Cu(111) surface by decomposition into nanoclusters driven by CO adsorption. Science 351, 475–478 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Eren, B. et al. One-dimensional nanoclustering of the Cu(100) surface under CO gas in the mbar pressure range. Surf. Sci. 651, 210–214 (2016).

    Article  CAS  Google Scholar 

  34. Luc, W. et al. Two-dimensional copper nanosheet for electrochemical reduction of carbon monoxide to acetate. Nat. Catal. 2, 423–430 (2019).

    Article  CAS  Google Scholar 

  35. Last, G. V. & Schmick, M. T. Identification and Selection of Major Carbon Dioxide Stream Compositions (Pacific Northwest National Laboratory, 2011).

  36. Luc, W. et al. SO2-induced selectivity change in CO2 electroreduction. J. Am. Chem. Soc. 141, 9902–9909 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Gholami, F., Tomas, M., Gholami, Z. & Vakili, M. Technologies for the nitrogen oxides reduction from flue gas: a review. Sci. Total Environ. 714, 136712 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Ko, B. H. et al. The impact of nitrogen oxides on electrochemical carbon dioxide reduction. Nat. Commun. 11, 5856 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Inflation reduction act. HR 5376. 117th Congress https://www.congress.gov/bill/117th-congress/house-bill/5376/text (2022).

  40. Ko, B. H. Electrochmeical Conversion of Greenhouse Gases and Air Pollutants: Carbon Dioxide, Carbon monoxide, and Nitrogen Oxides (Univ. Delaware, 2022).

Download references

Acknowledgements

This work was supported by the US Department of Energy under award number DE-FE0031910. K. U. Hansen is acknowledged for his contributions to the integration of critical auxiliary safety components into the system that were necessary to mitigate the hazards associated with large-scale CO electrolysis experiments.

Author information

Authors and Affiliations

Authors

Contributions

B.S.C., B.H.K., S.O. and F.J. designed all experiments. B.S.C. and B.H.K. wrote the paper. B.H.K. and S.O. conducted CO2 and CO electrolysis experiments up to 100 cm2. B.S.C. and S.O. designed the electrolyzer stack and conducted CO2 and CO electrolysis experiments for large reactors. B.H.K. and A.L. collected XPS measurements. L.C. conducted SEM and EDS measurements. B.S.C. and I.M. carried out material preparation for stack testing. F.J. supervised the whole project. All authors participated in the discussion and the preparation of the paper.

Corresponding author

Correspondence to Feng Jiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Engineering thanks Ming Ma, **gjie Wu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussions 1 and 2, Figs. 1–25 and Tables 1–5.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crandall, B.S., Ko, B.H., Overa, S. et al. Kilowatt-scale tandem CO2 electrolysis for enhanced acetate and ethylene production. Nat Chem Eng 1, 421–429 (2024). https://doi.org/10.1038/s44286-024-00076-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44286-024-00076-8

  • Springer Nature America, Inc.

Navigation