Log in

Highly sensitive water pollution monitoring using colloid-processed organic photodetectors

  • Article
  • Published:

From Nature Water

View current issue Submit your manuscript

Abstract

Water stands at the heart of the Sustainable Development Goals, and risk management for clean water often requires in situ monitoring of contaminants, where a portable photodetector with high detectivity is highly desired. The emerging portable organic photodetectors (OPDs) with intrinsic flexibility and light weight, which are promising candidates for in situ water pollution monitoring, often exhibit unsatisfactory specific detectivity (D*) lower than 1013 Jones, failing to meet monitoring requirements set below safety limits (~0.01–0.1 mg l−1) for pollutant discharge. Here we present OPDs with D* as high as 4.1 × 1013 Jones made from dense and ordered polymer films via colloid processing, attributed to their substantially lower energy disorder and fewer traps than those deposited via traditional solution processing. Detectable light intensities as weak as approaching 0.1 pW cm−2 of colloid-processed OPDs (CP-OPDs) at visible to near-infra-red light are achieved, on par with the premium commercial Si photodiode and overwhelming some widely used models. Highly sensitive and accurate monitoring of trace dye pollutants/chlorophyllin A analogue in water with a detection limit of 0.02/0.05 mg l−1 (below the discharge/eutrophication standard) is successfully accomplished through the developed CP-OPDs, surpassing the commercial Si photodiode that cannot effectively respond to the concentration below the standard. Colloid processing endows OPDs with the highest detectivity among reported portable photodetectors and makes CP-OPDs superior in in situ monitoring trace contaminants in water relative to traditional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1: Diagram of develo** CP-OPDs for in situ sensitive water monitoring.
Fig. 2: Colloid processing versus solution processing.
Fig. 3: High-detectivity CP-OPDs.
Fig. 4: Water pollution monitoring.
Fig. 5: Superiority of CP-OPD.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or Supplementary Information. The data that support the findings of this study and the raw data for all the figures have been uploaded to Figshare (https://doi.org/10.6084/m9.figshare.25470085).

References

  1. The Sustainable Development Goals Report (2022). United Nations https://unstats.Un.Org/sdgs/report/2022/ (2023).

  2. Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).

    Article  PubMed  Google Scholar 

  3. Turner, S. W. D. et al. Comparison of potential drinking water source contamination across one hundred U.S. cities. Nat. Commun. 12, 7254 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lin, J. et al. Environmental impacts and remediation of dye-containing wastewater. Nat. Rev. Earth Environ. 4, 785–803 (2023).

    Article  CAS  Google Scholar 

  5. Maity, A. et al. Scalable graphene sensor array for real-time toxins monitoring in flowing water. Nat. Commun. 14, 4184 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jung, J. K. et al. Cell-free biosensors for rapid detection of water contaminants. Nat. Biotechnol. 38, 1451–1459 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. García de Arquer, F. P., Armin, A., Meredith, P. & Sargent, E. H. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2, 16100 (2017).

    Article  Google Scholar 

  8. Wang, H. & Kim, D. H. Perovskite-based photodetectors: materials and devices. Chem. Soc. Rev. 46, 5204–5236 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Jiang, J. et al. Synergistic strain engineering of perovskite single crystals for highly stable and sensitive X-ray detectors with low-bias imaging and monitoring. Nat. Photon. 16, 575–581 (2022).

    Article  CAS  Google Scholar 

  10. Pan, W. et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat. Photon. 11, 726–732 (2017).

    Article  CAS  Google Scholar 

  11. Rauch, T. et al. Near-infrared imaging with quantum-dot-sensitized organic photodiodes. Nat. Photon. 3, 332–336 (2009).

    Article  CAS  Google Scholar 

  12. Jaehyun, K. et al. A skin-like two-dimensionally pixelized full-color quantum dot photodetector. Sci. Adv. 5, eaax8801 (2019).

    Article  Google Scholar 

  13. Zhang, G. et al. Renewed prospects for organic photovoltaics. Chem. Rev. 122, 14180–14274 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Yao, H. et al. Molecular design of benzodithiophene-based organic photovoltaic materials. Chem. Rev. 116, 7397–7457 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Wang, J. et al. The principles, design and applications of fused-ring electron acceptors. Nat. Rev. Chem. 6, 614–634 (2022).

    Article  PubMed  Google Scholar 

  16. Wei, Y. et al. Self‐powered organic photodetectors with high detectivity for near infrared light detection enabled by dark current reduction. Adv. Funct. Mater. 31, 2106326 (2021).

    Article  CAS  Google Scholar 

  17. Wu, Z. et al. Noise and detectivity limits in organic shortwave infrared photodiodes with low disorder. npj Flex. Electron. 4, 6 (2020).

    Article  Google Scholar 

  18. Sandberg, O. J. et al. Mid-gap trap state-mediated dark current in organic photodiodes. Nat. Photon. 17, 368–374 (2023).

    Article  CAS  Google Scholar 

  19. Canek, F.-H. et al. Large-area low-noise flexible organic photodiodes for detecting faint visible light. Science 370, 698–701 (2020).

    Article  Google Scholar 

  20. Discharge standards of water pollutants for dyeing and finishing of textile industry. Ministry of Ecology and Environment of the People’s Republic of China https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/shjbh/swrwpfbz/201211/t20121109_241788.htm (2012).

  21. Kuik, M. et al. 25th anniversary article: charge transport and recombination in polymer light-emitting diodes. Adv. Mater. 26, 512–531 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Kronemeijer, A. J. et al. Two-dimensional carrier distribution in top-gate polymer field-effect transistors: correlation between width of density of localized states and Urbach energy. Adv. Mater. 26, 728–733 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Nikolka, M. et al. High-mobility, trap-free charge transport in conjugated polymer diodes. Nat. Commun. 10, 2122 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yan, X. et al. Approaching disorder-tolerant semiconducting polymers. Nat. Commun. 12, 5723 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bharti, V. et al. Improved hole mobility and suppressed trap density in polymer-polymer dual donor based highly efficient organic solar cells. Appl. Phys. Lett. 108, 073505 (2016).

    Article  Google Scholar 

  26. Lim, J. A. et al. Polymer semiconductor crystals. Mater. Today 13, 14–24 (2010).

    Article  CAS  Google Scholar 

  27. Sneyd, A. J. et al. Efficient energy transport in an organic semiconductor mediated by transient exciton delocalization. Sci. Adv. 7, eabh4232 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu, S. et al. High-efficiency organic solar cells with low non-radiative recombination loss and low energetic disorder. Nat. Photon. 14, 300–305 (2020).

    Article  CAS  Google Scholar 

  29. Gong, W. et al. Influence of energetic disorder on electroluminescence emission in polymer:fullerene solar cells. Phys. Rev. B 86, 024201 (2012).

    Article  Google Scholar 

  30. Verploegen, E. et al. Effects of thermal annealing upon the morphology of polymer-fullerene blends. Adv. Funct. Mater. 20, 3519–3529 (2010).

    Article  CAS  Google Scholar 

  31. Walter, T., Herberholz, R., Müller, C. & Schock, H. W. Determination of defect distributions from admittance measurements and application to Cu(In,Ga)Se2 based heterojunctions. J. Appl. Phys. 80, 4411–4420 (1996).

    Article  CAS  Google Scholar 

  32. Shao, Y. et al. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Malliaras, G. G., Salem, J. R., Brock, P. J. & Scott, C. Electrical characteristics and efficiency of single-layer organic light-emitting diodes. Phys. Rev. B 58, R13411–R13414 (1998).

    Article  CAS  Google Scholar 

  34. Smilgies, D.-M. Scherrer grain-size analysis adapted to grazing-incidence scattering with area detectors. Erratum. J. Appl. Crystallogr. 46, 286–286 (2013).

    Article  CAS  Google Scholar 

  35. Cheng, P. et al. Diluting concentrated solution: a general, simple and effective approach to enhance efficiency of polymer solar cells. Energy Environ. Sci. 8, 2357–2364 (2015).

    Article  CAS  Google Scholar 

  36. Zhao, X. et al. Antisolvent-assisted controllable growth of fullerene single crystal microwires for organic field effect transistors and photodetectors. Nanoscale 10, 8170–8179 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Yao, Z. F. et al. Wafer-scale fabrication of high-performance n-type polymer monolayer transistors using a multi-level self-assembly strategy. Adv. Mater. 31, e1806747 (2019).

    Article  PubMed  Google Scholar 

  38. Haneef, H. F., Zeidell, A. M. & Jurchescu, O. D. Charge carrier traps in organic semiconductors: a review on the underlying physics and impact on electronic devices. J. Mater. Chem. C 8, 759–787 (2020).

    Article  CAS  Google Scholar 

  39. Ugur, E. et al. Life on the Urbach edge. J. Phys. Chem. Lett. 13, 7702–7711 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Liu, T. et al. Near infrared self‐powered organic photodetectors with a record responsivity enabled by low trap density. Adv. Funct. Mater. 33, 2301167 (2023).

    Article  CAS  Google Scholar 

  41. **ong, S. et al. Universal strategy to reduce noise current for sensitive organic photodetectors. ACS Appl. Mater. Interfaces 9, 9176–9183 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Kim, T.-H. et al. Full-colour quantum dot displays fabricated by transfer printing. Nat. Photon. 5, 176–182 (2011).

    Article  CAS  Google Scholar 

  43. Fang, Y., Armin, A., Meredith, P. & Huang, J. Accurate characterization of next-generation thin-film photodetectors. Nat. Photon. 13, 1–4 (2019).

    Article  CAS  Google Scholar 

  44. Tumbleston, J. R. et al. The influence of molecular orientation on organic bulk heterojunction solar cells. Nat. Photon. 8, 385–391 (2014).

    Article  CAS  Google Scholar 

  45. Yuan, J. et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3, 1140–1151 (2019).

    Article  CAS  Google Scholar 

  46. Sajjad, M. T., Ruseckas, A. & Samuel, I. D. W. Enhancing exciton diffusion length provides new opportunities for organic photovoltaics. Matter 3, 341–354 (2020).

    Article  Google Scholar 

  47. Product page of FDS100. Thorlabs https://www.thorlabs.us/thorProduct.cfm?partNumber=FDS100 (2017).

  48. Product page of DSi200. Zolix https://www.zolix.com.cn/prodcon_370_379_387.html (2018).

  49. Datasheet of Si photodiode S1336 series. Hamamatsu https://www.hamamatsu.com.cn/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/ssd/s1336_series_kspd1022e.pdf (2023).

  50. Kaiser, C. et al. A universal Urbach rule for disordered organic semiconductors. Nat. Commun. 12, 3988 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bisquert, J. Interpretation of electron diffusion coefficient in organic and inorganic semiconductors with broad distributions of states. Phys. Chem. Chem. Phys. 10, 3175–3194 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Pomerantz, Z. et al. Capacitance, spectroelectrochemistry and conductivity of polarons and bipolarons in a polydicarbazole based conducting polymer. J. Electroanal. Chem. 614, 49–60 (2008).

    Article  CAS  Google Scholar 

  53. Shao, Y., Yuan, Y. & Huang, J. Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells. Nat. Energy 1, 15001 (2016).

    Article  CAS  Google Scholar 

  54. Heath, J. T., Cohen, J. D. & Shafarman, W. N. Bulk and metastable defects in CuIn1−xGaxSe2 thin films using drive-level capacitance profiling. J. Appl. Phys. 95, 1000–1010 (2004).

    Article  CAS  Google Scholar 

  55. Liu, J. et al. Challenges and recent advances in photodiodes-based organic photodetectors. Mater. Today 51, 475–503 (2021).

    Article  CAS  Google Scholar 

  56. Oba, T. et al. Spectral characteristics and colloidal properties of chlorophyll a′ in aqueous methanol. J. Phys. Chem. B 101, 3261–3268 (1997).

    Article  CAS  Google Scholar 

  57. Water quality—determination of auiline compounds—spectrophotometric method with N-(1-naphthyl)echylenediamine. Ministry of Ecology and Environment of the People’s Republic of China https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/199007/t19900701_67185.shtml (1990).

  58. Yang, X.-E., Wu, X., Hao, H.-l & He, Z.-l Mechanisms and assessment of water eutrophication. J. Zhejiang Univ. Sci. B 9, 197–209 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhong, Z. et al. Ternary organic photodiodes with spectral response from 300 to 1200 nm for spectrometer application. Sci. China Mater. 64, 2430–2438 (2021).

    Article  CAS  Google Scholar 

  60. Li, T. et al. Sensitive photodetection below silicon bandgap using quinoid-capped organic semiconductors. Sci. Adv. 9, eadf6152 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the financial support from the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0520102) (Y. Lin), the National Natural Science Foundation of China (22105208) (T.L.), and the Bei**g Natural Science Foundation (2232075) (Y. Lin).

Author information

Authors and Affiliations

Authors

Contributions

Y. Lin conceived the idea, designed the experiments and supervised the project. T.L. fabricated and characterized the OPD devices and carried out the measurements of TEM, noise current, FTPS-EQE, tDOS, space-charge limited current and DLCP. G.H. and L.S. conducted the measurements of response time and cut-off frequency and performed the application of water pollution monitoring. H.W. and Y.Q. supplied and optimized the method of colloid preparation and carried out the TEM measurement. L.D. and Y.F. conducted the NEP and LDR measurements. M.S. and Y.S. performed the electron DOS measurement. J.Z. carried out the GIWAXS measurement. Y. Li conducted the AFM measurement. Z.L. assisted in the measurement of DLCP. Y. Lin and T.L. wrote the manuscript. All authors reviewed this paper.

Corresponding authors

Correspondence to Yan Qiao, Liang Shen or Yuze Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Nicola Gasparini and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, Figs. 1–20 and Tables 1–3.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Hu, G., Wu, H. et al. Highly sensitive water pollution monitoring using colloid-processed organic photodetectors. Nat Water 2, 577–588 (2024). https://doi.org/10.1038/s44221-024-00247-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-024-00247-0

  • Springer Nature Limited

Navigation