Log in

Achieving the Kunming–Montreal global biodiversity targets for blue carbon ecosystems

  • Perspective
  • Published:

From Nature Reviews Earth & Environment

View current issue Sign up to alerts

Abstract

The Kunming–Montreal Global Biodiversity Framework (KM-GBF) provides a major impetus for the restoration and conservation of blue carbon ecosystems to address the biodiversity and climate crises. In this Perspective, we translate the KM-GBF targets for blue carbon ecosystems into quantitative metrics, outline action that must be taken to achieve these goals and quantify the associated climate benefits. To achieve the KM-GBF targets, net mangrove, saltmarsh and seagrass losses of 187–190 km2, 76–126 km2 and 3,068–3,597 km2, respectively, must be avoided annually from 2030 onwards and 23,693–24,369 km2, 10,467–17,296 km2 and 90,601–106,215 km2 of these ecosystems must be restored. Achieving the KM-GBF targets would contribute 2.8% of the reduction of carbon emissions needed to limit anthropogenic warming to 2 °C by 2030. However, the cost of achieving the targets (US$520.1 billion yr–1) far exceeds the amount pledged ($200 billion yr–1) for all ecosystems. Thus, research is needed to develop cost-effective restoration and conservation technologies, along with innovative financial models to incentivize investments in nature. Additionally, blue carbon actions must be embedded within National Biodiversity Strategies and Action Plans to ensure that the targets are met.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Global instruments supporting the restoration and conservation of blue carbon ecosystems.
Fig. 2: Global distribution of blue carbon ecosystems and marine protected areas.
Fig. 3: Solutions and actions to address the loss of blue carbon ecosystems.
Fig. 4: Framework for achieving biodiversity targets for blue carbon ecosystems.

Similar content being viewed by others

Data availability

Mangrove, saltmarsh and seagrass distributions in Fig. 2 are from the Ocean Data Viewer (originally published in refs. 153,154), the MPA distribution is from the Protected Planet (December 2023) and the overlap between MPAs and BCEs was assessed using ArcGIS 10.7 (ESRI, Redlands, CA, USA).

References

  1. Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560 (2011).

    Google Scholar 

  2. Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Change 3, 961–968 (2013).

    CAS  Google Scholar 

  3. Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl Acad. Sci. USA 106, 12377–12381 (2009).

    CAS  Google Scholar 

  4. Goldberg, L., Lagomasino, D., Thomas, N. & Fatoyinbo, T. Global declines in human‐driven mangrove loss. Glob. Chang. Biol. 26, 5844–5855 (2020).

    Google Scholar 

  5. Campbell, A. D., Fatoyinbo, L., Goldberg, L. & Lagomasino, D. Global hotspots of salt marsh change and carbon emissions. Nature 612, 701–706 (2022).

    CAS  Google Scholar 

  6. Serrano, O. et al. Australian vegetated coastal ecosystems as global hotspots for climate change mitigation. Nat. Commun. 10, 4313 (2019).

    Google Scholar 

  7. Pendleton, L. et al. Estimating global ‘blue carbon’ emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 7, e43542 (2012).

    CAS  Google Scholar 

  8. Macreadie, P. I. et al. Blue carbon as a natural climate solution. Nat. Rev. Earth Environ. 2, 826–839 (2021).

    CAS  Google Scholar 

  9. Pörtner, H. O. et al. Overcoming the coupled climate and biodiversity crises and their societal impacts. Science 380, eabl4881 (2023).

    Google Scholar 

  10. United Nations Framework Convention on Climate Change. D1/CP. 21, Adoption of the Paris Agreement. In Paris Climate Change Conference (UNFCCC, 2015).

  11. Convention on Biological Diversity. The KunmingMontreal Global Biodiversity Framework (CBD, 2022).

  12. Díaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science 370, 411–413 (2020).

    Google Scholar 

  13. Buelow, C. A. et al. Ambitious global targets for mangrove and seagrass recovery. Curr. Biol. 32, 1641–1649 (2022).

    CAS  Google Scholar 

  14. Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–244 (2014).

    CAS  Google Scholar 

  15. Xu, H. et al. Ensuring effective implementation of the post-2020 global biodiversity targets. Nat. Ecol. Evol. 5, 411–418 (2021).

    Google Scholar 

  16. CBD High-Level Panel. Resourcing the Aichi Biodiversity Targets: An Assessment of Benefits, Investments and Resource Needs for Implementing the Strategic Plan for Biodiversity 2011–2020 (CBD, 2014).

  17. Murray, N. J. et al. High-resolution map** of losses and gains of Earth’s tidal wetlands. Science 376, 744–749 (2022).

    CAS  Google Scholar 

  18. Dunic, J. C., Brown, C. J., Connolly, R. M., Turschwell, M. P. & Côté, I. M. Long‐term declines and recovery of meadow area across the world’s seagrass bioregions. Glob. Chang. Biol. 27, 4096–4109 (2021).

    CAS  Google Scholar 

  19. Hamilton, S. E. & Casey, D. Creation of a high spatio‐temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC‐21). Glob. Ecol. Biogeogr. 25, 729–738 (2016).

    Google Scholar 

  20. Unsworth, R. K., Cullen-Unsworth, L. C., Jones, B. L. & Lilley, R. J. The planetary role of seagrass conservation. Science 377, 609–613 (2022).

    CAS  Google Scholar 

  21. de Los Santos, C. B. et al. Recent trend reversal for declining European seagrass meadows. Nat. Commun. 10, 1–8 (2019).

    Google Scholar 

  22. Orth, R. J. et al. Restoration of seagrass habitat leads to rapid recovery of coastal ecosystem services. Sci. Adv. 6, eabc6434 (2020).

    CAS  Google Scholar 

  23. Wang, X. et al. Rebound in China’s coastal wetlands following conservation and restoration. Nat. Sustain. 4, 1076–1083 (2021).

    Google Scholar 

  24. Van de Broek, M., Baert, L., Temmerman, S. & Govers, G. Soil organic carbon stocks in a tidal marsh landscape are dominated by human marsh embankment and subsequent marsh progradation. Eur. J. Soil Sci. 70, 338–349 (2019).

    Google Scholar 

  25. Gu, J. et al. Losses of salt marsh in China: trends, threats and management. Estuar. Coast. Shelf Sci. 214, 98–109 (2018).

    Google Scholar 

  26. Fu, C. et al. Stocks and losses of soil organic carbon from Chinese vegetated coastal habitats. Glob. Chang. Biol. 27, 202–214 (2021).

    CAS  Google Scholar 

  27. Marbà, N. & Duarte, C. M. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Glob. Chang. Biol. 16, 2366–2375 (2010).

    Google Scholar 

  28. Arias-Ortiz, A. et al. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat. Clim. Change 8, 338–344 (2018).

    CAS  Google Scholar 

  29. Rogers, K. et al. Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise. Nature 567, 91–95 (2019).

    CAS  Google Scholar 

  30. Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    CAS  Google Scholar 

  31. Worthington, T. & Spalding, M. Mangrove restoration potential: a global map highlighting a critical opportunity. https://doi.org/10.17863/CAM.39153 (Apollo - University of Cambridge Repository, 2018).

  32. Jakovac, C. C. et al. Costs and carbon benefits of mangrove conservation and restoration: a global analysis. Ecol. Econ. 176, 106758 (2020).

    Google Scholar 

  33. Lovelock, C. E., Barbier, E. & Duarte, C. M. Tackling the mangrove restoration challenge. PLoS Biol. 20, e3001836 (2022).

    CAS  Google Scholar 

  34. Damastuti, E. & de Groot, R. Effectiveness of community-based mangrove management for sustainable resource use and livelihood support: a case study of four villages in Central Java, Indonesia. J. Environ. Manage. 203, 510–521 (2017).

    Google Scholar 

  35. Nam, V. N., Sasmito, S. D., Murdiyarso, D., Purbopuspito, J. & MacKenzie, R. A. Carbon stocks in artificially and naturally regenerated mangrove ecosystems in the Mekong Delta. Wetl. Ecol. Manag. 24, 231–244 (2016).

    CAS  Google Scholar 

  36. Gies, E. Fortresses of mud. Nature 562, 178–180 (2018).

    CAS  Google Scholar 

  37. Lovelock, C. E. & Brown, B. M. Land tenure considerations are key to successful mangrove restoration. Nat. Ecol. Evol. 3, 1135–1135 (2019).

    Google Scholar 

  38. Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).

    CAS  Google Scholar 

  39. Waltham, N. J. et al. UN decade on ecosystem restoration 2021–2030 — what chance for success in restoring coastal ecosystems? Front. Mar. Sci. 7, 71 (2020).

    Google Scholar 

  40. Macreadie, P. I. et al. Operationalizing marketable blue carbon. One Earth 5, 485–492 (2022).

    Google Scholar 

  41. Chazdon, R. L. et al. A policy-driven knowledge agenda for global forest and landscape restoration. Conserv. Lett. 10, 125–132 (2017).

    Google Scholar 

  42. High-quality Blue Carbon Principles and Guidance: a Triple-Benefit Investment for People, Nature, and Climate (Conservation International, 2022); https://merid.org/wp-content/uploads/2022/11/HQBC-PG_FINAL_11.8.2022.pdf.

  43. United Nations Educational, Scientific and Cultural Organization. UNESCO Marine World Heritage: Custodians of the globe’s blue carbon assets. Paris, France (UNESCO, 2020).

  44. Jankowska, E., Pelc, R., Alvarez, J., Mehra, M. & Frischmann, C. J. Climate benefits from establishing marine protected areas targeted at blue carbon solutions. Proc. Natl Acad. Sci. USA 119, e2121705119 (2022).

    CAS  Google Scholar 

  45. Wilson, K. L., Tittensor, D. P., Worm, B. & Lotze, H. K. Incorporating climate change adaptation into marine protected area planning. Glob. Chang. Biol. 26, 3251–3267 (2020).

    Google Scholar 

  46. Laffoley, D. et al. Marine protected areas. in World Seas: An Environmental Evaluation (ed. Sheppard, C.) 549–569 (Academic Press, 2019).

  47. Whitfield, A. K. The role of seagrass meadows, mangrove forests, salt marshes and reed beds as nursery areas and food sources for fishes in estuaries. Rev. Fish Biol. Fish. 27, 75–110 (2017).

    Google Scholar 

  48. Gallagher, A. J. et al. Tiger sharks support the characterization of the world’s largest seagrass ecosystem. Nat. Commun. 13, 6328 (2022).

    CAS  Google Scholar 

  49. Gopal, B. & Chauhan, M. Biodiversity and its conservation in the Sundarban mangrove ecosystem. Aquat. Sci. 68, 338–354 (2006).

    Google Scholar 

  50. Wylie, L., Sutton-Grier, A. E. & Moore, A. Keys to successful blue carbon projects: lessons learned from global case studies. Mar. Policy 65, 76–84 (2016).

    Google Scholar 

  51. Macreadie, P. I. et al. Can we manage coastal ecosystems to sequester more blue carbon? Front. Ecol. Environ. 15, 206–213 (2017).

    Google Scholar 

  52. Friess, D. A., Adame, M. F., Adams, J. B. & Lovelock, C. E. Mangrove forests under climate change in a 2 °C world. Wiley Interdiscip. Rev. Clim. Change 13, e792 (2022).

    Google Scholar 

  53. Hilty, J. et al. Guidelines for conserving connectivity through ecological networks and corridors. Best Practice Protected Area Guidelines Series No. 30 (IUCN, 2020).

  54. Bryan-Brown, D. N. et al. Global trends in mangrove forest fragmentation. Sci. Rep. 10, 1–8 (2020).

    Google Scholar 

  55. Polidoro, B. A. et al. The loss of species: mangrove extinction risk and geographic areas of global concern. PLoS ONE 5, e10095 (2010).

    Google Scholar 

  56. Short, F. T. et al. Extinction risk assessment of the world’s seagrass species. Biol. Conserv. 144, 1961–1971 (2011).

    Google Scholar 

  57. Daru, B. H., Yessoufou, K., Mankga, L. T. & Davies, T. J. A global trend towards the loss of evolutionarily unique species in mangrove ecosystems. PLoS ONE 8, e66686 (2013).

    CAS  Google Scholar 

  58. Sievers, M. et al. Integrating outcomes of IUCN Red List of Ecosystems assessments for connected coastal wetlands. Ecol. Indic. 116, 106489 (2020).

    Google Scholar 

  59. Ghoraba, S. M. M., Halmy, M. W. A., Salem, B. B. & Badr, N. B. E. Application of IUCN Red List of Ecosystems to assess the ecological status of marine bar ecosystems of Burullus wetland: a Ramsar site. Reg. Stud. Mar. Sci. 45, 101844 (2021).

    Google Scholar 

  60. Clarke, P. J. The population dynamics of the mangrove Avicennia marina: demographic synthesis and predictive modelling. Hydrobiologia 295, 83–85 (1995).

    Google Scholar 

  61. Jahnke, M. et al. Integrating genetics, biophysical, and demographic insights identifies critical sites for seagrass conservation. Ecol. Appl. 30, e02121 (2020).

    Google Scholar 

  62. Bandaranayake, W. Traditional and medicinal uses of mangroves. Mangroves Salt Marshes 2, 133–148 (1998).

    Google Scholar 

  63. Vinoth, R., Kumaravel, S. & Ranganathan, R. Therapeutic and traditional uses of mangrove plants. J. Drug Deliv. Ther. 9, 849–854 (2019).

    CAS  Google Scholar 

  64. Vasarri, M., De Biasi, A. M., Barletta, E., Pretti, C. & Degl’Innocenti, D. An overview of new insights into the benefits of the seagrass Posidonia oceanica for human health. Mar. Drugs 19, 476 (2021).

    CAS  Google Scholar 

  65. Ilman, M., Dargusch, P. & Dart, P. A historical analysis of the drivers of loss and degradation of Indonesia’s mangroves. Land Use Policy 54, 448–459 (2016).

    Google Scholar 

  66. McKinley, E. et al. Coastal agricultural landscapes: map** and understanding grazing intensity on Welsh saltmarshes. Ocean Coast. Manag. 222, 106128 (2022).

    Google Scholar 

  67. Davidson, K. E. et al. Livestock grazing alters multiple ecosystem properties and services in salt marshes: a meta‐analysis. J. Appl. Ecol. 54, 1395–1405 (2017).

    CAS  Google Scholar 

  68. Waltham, N. J., Lovelock, C. & Buelow, C. A. Blue carbon stocks and cycling in tropical tidal marshes facing grazing pressure. Mar. Ecol. Prog. Ser. 717, 1–16 (2023).

    CAS  Google Scholar 

  69. Ahmed, N., Thompson, S. & Glaser, M. Integrated mangrove–shrimp cultivation: potential for blue carbon sequestration. Ambio 47, 441–452 (2018).

    CAS  Google Scholar 

  70. Nessa, N., Gatta, R., Ambo-Rappe, R., Jompa, J. & Yahya, A. F. The role of women in the utilization of Enhalus acoroides: livelihoods, food security, impacts and implications for coastal area management. IOP Conf. Ser. Earth Environ. Sci. 564, 012073 (2020).

    Google Scholar 

  71. Gedan, K. B., Silliman, B. R. & Bertness, M. D. Centuries of human-driven change in salt marsh ecosystems. Annu. Rev. Mar. Sci. 1, 117–141 (2009).

    Google Scholar 

  72. Davidson, I. C., Cott, G. M., Devaney, J. L. & Simkanin, C. Differential effects of biological invasions on coastal blue carbon: a global review and meta-analysis. Glob. Chang. Biol. 24, 5218–5230 (2018).

    Google Scholar 

  73. Liu, M. et al. Rapid invasion of Spartina alterniflora in the coastal zone of mainland China: new observations from Landsat OLI images. Remote Sens. 10, 1933 (2018).

    Google Scholar 

  74. Ren, J. et al. An invasive species erodes the performance of coastal wetland protected areas. Sci. Adv. 7, eabi8943 (2021).

    Google Scholar 

  75. Simberloff, D. et al. Impacts of biological invasions: what’s what and the way forward. Trends Ecol. Evol. 28, 58–66 (2013).

    Google Scholar 

  76. Giakoumi, S. et al. Management priorities for marine invasive species. Sci. Total Environ. 688, 976–982 (2019).

    CAS  Google Scholar 

  77. Allendorf, F. W. & Lundquist, L. L. Introduction: population biology, evolution, and control of invasive species. Conserv. Biol. 17, 24–30 (2003).

    Google Scholar 

  78. Havel, J. E., Kovalenko, K. E., Thomaz, S. M., Amalfitano, S. & Kats, L. B. Aquatic invasive species: challenges for the future. Hydrobiologia 750, 147–170 (2015).

    Google Scholar 

  79. Qi, X. & Chmura, G. L. Invasive Spartina alterniflora marshes in China: a blue carbon sink at the expense of other ecosystem services. Front. Ecol. Environ. 21, 182–190 (2023).

    Google Scholar 

  80. Li, H. et al. Invasion of Spartina alterniflora in the coastal zone of mainland China: control achievements from 2015 to 2020 towards the Sustainable Development Goals. J. Environ. Manage. 323, 116242 (2022).

    Google Scholar 

  81. Howard, B. R., Francis, F. T., Côté, I. M. & Therriault, T. W. Habitat alteration by invasive European green crab (Carcinus maenas) causes eelgrass loss in British Columbia, Canada. Biol. Invasions 21, 3607–3618 (2019).

    Google Scholar 

  82. Atwood, T. B. et al. Predators help protect carbon stocks in blue carbon ecosystems. Nat. Clim. Change 5, 1038–1045 (2015).

    Google Scholar 

  83. Nuñez, M. A., Kuebbing, S., Dimarco, R. D. & Simberloff, D. Invasive species: to eat or not to eat, that is the question. Conserv. Lett. 5, 334–341 (2012).

    Google Scholar 

  84. Goldsmit, J. et al. Projecting present and future habitat suitability of ship-mediated aquatic invasive species in the Canadian arctic. Biol. Invasions 20, 501–517 (2018).

    Google Scholar 

  85. Pyšek, P. et al. A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob. Chang. Biol. 18, 1725–1737 (2012).

    Google Scholar 

  86. Born, W., Rauschmayer, F. & Bräuer, I. Economic evaluation of biological invasions — a survey. Ecol. Econ. 55, 321–336 (2005).

    Google Scholar 

  87. Martin, P. H., Canham, C. D. & Marks, P. L. Why forests appear resistant to exotic plant invasions: intentional introductions, stand dynamics, and the role of shade tolerance. Front. Ecol. Environ. 7, 142–149 (2009).

    Google Scholar 

  88. Serrano, O. et al. Reconstruction of centennial-scale fluxes of chemical elements in the Australian coastal environment using seagrass archives. Sci. Total Environ. 541, 883–894 (2016).

    CAS  Google Scholar 

  89. Zhou, Q. et al. Characteristics and distribution of microplastics in the coastal mangrove sediments of China. Sci. Total Environ. 703, 134807 (2020).

    CAS  Google Scholar 

  90. Ashok, A. et al. Accelerated burial of petroleum hydrocarbons in Arabian Gulf blue carbon repositories. Sci. Total Environ. 669, 205–212 (2019).

    CAS  Google Scholar 

  91. Deegan, L. A. et al. Coastal eutrophication as a driver of salt marsh loss. Nature 490, 388–392 (2012).

    CAS  Google Scholar 

  92. Lefcheck, J. S. et al. Long-term nutrient reductions lead to the unprecedented recovery of a temperate coastal region. Proc. Natl Acad. Sci. USA 115, 3658–3662 (2018).

    Google Scholar 

  93. Rovai, A. S. et al. Global controls on carbon storage in mangrove soils. Nat. Clim. Change 8, 534–538 (2018).

    CAS  Google Scholar 

  94. Li, Y. et al. Soil carbon, nitrogen, and phosphorus stoichiometry and fractions in blue carbon ecosystems: implications for carbon accumulation in allochthonous-dominated habitats. Environ. Sci. Technol. 57, 5913–5923 (2023).

    CAS  Google Scholar 

  95. Lovelock, C. E., Friess, D. A., Kauffman, J. B. & Fourqurean, J. W. Human impacts on blue carbon ecosystems. in A Blue Carbon Primer: The State of Coastal Wetland Carbon Science, Practice and Policy (eds Windham-Myers, L., Crooks, S. & Troxler, T. G.) 17–24 (CRC Press, 2018).

  96. Prato, T. & Herath, G. Multiple-criteria decision analysis for integrated catchment management. Ecol. Econ. 63, 627–632 (2007).

    Google Scholar 

  97. Fu, C. et al. Dynamics of trace element enrichment in blue carbon ecosystems in relation to anthropogenic activities. Environ. Int. 180, 108232 (2023).

    CAS  Google Scholar 

  98. Carvalho, L. et al. Protecting and restoring Europe’s waters: an analysis of the future development needs of the Water Framework Directive. Sci. Total Environ. 658, 1228–1238 (2019).

    CAS  Google Scholar 

  99. Vigiak, O. et al. Recent regional changes in nutrient fluxes of European surface waters. Sci. Total Environ. 858, 160063 (2023).

    CAS  Google Scholar 

  100. Ahmed, N., Cheung, W. W., Thompson, S. & Glaser, M. Solutions to blue carbon emissions: shrimp cultivation, mangrove deforestation and climate change in coastal Bangladesh. Mar. Policy 82, 68–75 (2017).

    Google Scholar 

  101. Peterson, C. H. et al. Long-term ecosystem response to the Exxon Valdez oil spill. Science 302, 2082–2086 (2003).

    CAS  Google Scholar 

  102. Silliman, B. R. et al. Degradation and resilience in Louisiana salt marshes after the BP–Deepwater Horizon oil spill. Proc. Natl Acad. Sci. USA 109, 11234–11239 (2012).

    CAS  Google Scholar 

  103. Chen, J. et al. Oil spills from global tankers: status review and future governance. J. Clean. Prod. 227, 20–32 (2019).

    Google Scholar 

  104. Singh, A., Asmath, H., Chee, C. L. & Darsan, J. Potential oil spill risk from ship** and the implications for management in the Caribbean Sea. Mar. Pollut. Bull. 93, 217–227 (2015).

    CAS  Google Scholar 

  105. Mapelli, F. et al. Biotechnologies for marine oil spill cleanup: indissoluble ties with microorganisms. Trends Biotechnol. 35, 860–870 (2017).

    CAS  Google Scholar 

  106. Björk, M., Short, F., Mcleod, E. & Beer, S. Managing Seagrasses for Resilience to Climate Change (IUCN, 2008).

  107. Hansen, L., Hoffman, J., Drews, C. & Mielbrecht, E. Designing climate‐smart conservation: guidance and case studies. Conserv. Biol. 24, 63–69 (2010).

    Google Scholar 

  108. Ouyang, X., Connolly, R. M. & Lee, S. Y. Revised global estimates of resilience to sea level rise for tidal marshes. Environ. Chall. 9, 100593 (2022).

    Google Scholar 

  109. Serrano, O., Arias-Ortiz, A., Duarte, C. M., Kendrick, G. A. & Lavery, P. S. Impact of marine heatwaves on seagrass ecosystems. in Ecosystem Collapse and Climate Change (eds Canadell, J. G. & Jackson, R. B.) 345–364 (Springer, 2021).

  110. Prahalad, V., Whitehead, J., Latinovic, A. & Kirkpatrick, J. B. The creation and conservation effectiveness of state-wide wetlands and waterways and coastal refugia planning overlays for Tasmania, Australia. Land Use Policy 81, 502–512 (2019).

    Google Scholar 

  111. Bell-James, J., Fitzsimons, J. A., Gillies, C. L., Shumway, N. & Lovelock, C. E. Rolling covenants to protect coastal ecosystems in the face of sea-level rise. Conserv. Sci. Pract. 4, e593 (2022).

    Google Scholar 

  112. Intergovernmental Panel on Climate Change. in Climate Change 2023: Synthesis Report (eds Core Writing Team, Lee, H. & Romero, J.) (IPCC, 2023).

  113. Kirwan, M. L. & Megonigal, J. P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504, 53–60 (2013).

    CAS  Google Scholar 

  114. Dethier, E. N., Renshaw, C. E. & Magilligan, F. J. Rapid changes to global river suspended sediment flux by humans. Science 376, 1447–1452 (2022).

    CAS  Google Scholar 

  115. Maavara, T. et al. River dam impacts on biogeochemical cycling. Nat. Rev. Earth Environ. 1, 103–116 (2020).

    Google Scholar 

  116. Lagomasino, D. et al. Storm surge and ponding explain mangrove dieback in southwest Florida following Hurricane Irma. Nat. Commun. 12, 4003 (2021).

    CAS  Google Scholar 

  117. Krauss, K. W. & Osland, M. J. Tropical cyclones and the organization of mangrove forests: a review. Ann. Bot. 125, 213–234 (2020).

    Google Scholar 

  118. O’Brien, K. R. et al. Seagrass ecosystem trajectory depends on the relative timescales of resistance, recovery and disturbance. Mar. Pollut. Bull. 134, 166–176 (2018).

    Google Scholar 

  119. Stipcich, P., Pansini, A., Beca-Carretero, P., Stengel, D. B. & Ceccherelli, G. Field thermo acclimation increases the resilience of Posidonia oceanica seedlings to marine heat waves. Mar. Pollut. Bull. 184, 114230 (2022).

    CAS  Google Scholar 

  120. Lovelock, C. E. & Reef, R. Variable impacts of climate change on blue carbon. One Earth 3, 195–211 (2020).

    Google Scholar 

  121. Kelleway, J. J. et al. Review of the ecosystem service implications of mangrove encroachment into salt marshes. Glob. Chang. Biol. 23, 3967–3983 (2017).

    Google Scholar 

  122. Gajdzik, L. et al. A portfolio of climate‐tailored approaches to advance the design of marine protected areas in the Red Sea. Glob. Chang. Biol. 27, 3956–3968 (2021).

    Google Scholar 

  123. Guerra-Vargas, L. A., Gillis, L. G. & Mancera-Pineda, J. E. Stronger together: do coral reefs enhance seagrass meadows ‘blue carbon’ potential? Front. Mar. Sci. 7, 628 (2020).

    Google Scholar 

  124. United Nations Environment Programme. Emissions Gap Report 2023: Broken Record — Temperatures Hit New Highs, Yet World Fails to Cut Emissions (Again). Nairobi (UNEP, 2023).

  125. Murdiyarso, D. et al. The potential of Indonesian mangrove forests for global climate change mitigation. Nat. Clim. Change 5, 1089–1092 (2015).

    CAS  Google Scholar 

  126. Nicholas, H. Indonesia Renews Peat Restoration Bid to Include Mangroves, But Hurdles Abound. https://news.mongabay.com/2021/01/indonesia-renews-peatland-mangrove-restoration-agency-brgm/ (Mongabay, 2021).

  127. Hamilton, S. E. & Friess, D. A. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nat. Clim. Change 8, 240–244 (2018).

    CAS  Google Scholar 

  128. Fu, C. et al. Substantial blue carbon sequestration in the world’s largest seagrass meadow. Commun. Earth Environ. 4, 474 (2023).

    Google Scholar 

  129. Bayraktarov, E. et al. The cost and feasibility of marine coastal restoration. Ecol. Appl. 26, 1055–1074 (2016).

    Google Scholar 

  130. Vanderklift, M. A. et al. Constraints and opportunities for market-based finance for the restoration and protection of blue carbon ecosystems. Mar. Policy 107, 103429 (2019).

    Google Scholar 

  131. Fakhraee, M., Planavsky, N. J. & Reinhard, C. T. Ocean alkalinity enhancement through restoration of blue carbon ecosystems. Nat. Sustain. 6, 1087–1094 (2023).

    Google Scholar 

  132. Luisetti, T. et al. Climate action requires new accounting guidance and governance frameworks to manage carbon in shelf seas. Nat. Commun. 11, 4599 (2020).

    CAS  Google Scholar 

  133. Canning, A. D. et al. Financial incentives for large-scale wetland restoration: beyond markets to common asset trusts. One Earth 4, 937–950 (2021).

    Google Scholar 

  134. Etter, A., Andrade, A., Nelson, C. R., Cortés, J. & Saavedra, K. Assessing restoration priorities for high-risk ecosystems: an application of the IUCN Red List of Ecosystems. Land Use Policy 99, 104874 (2020).

    Google Scholar 

  135. Silva, E. et al. Prioritizing areas for ecological restoration: a participatory approach based on cost–effectiveness. J. Appl. Ecol. 60, 1194–1205 (2023).

    Google Scholar 

  136. Song, S. et al. Mangrove reforestation provides greater blue carbon benefit than afforestation for mitigating global climate change. Nat. Commun. 14, 756 (2023).

    CAS  Google Scholar 

  137. Herr, D., Himes-Cornell, A. & Laffoley, D. National Blue Carbon Policy Assessment Framework (IUCN, 2016).

  138. Friess, D. A. The potential for mangrove and seagrass blue carbon in Small Island States. Curr. Opin. Environ. Sustain. 64, 101324 (2023).

    Google Scholar 

  139. Ayostina, I., Napitupulu, L., Robyn, B., Maharani, C. & Murdiyarso, D. Network analysis of blue carbon governance process in Indonesia. Mar. Policy 137, 104955 (2022).

    Google Scholar 

  140. Shumway, N. et al. Policy solutions to facilitate restoration in coastal marine environments. Mar. Policy 134, 104789 (2021).

    Google Scholar 

  141. Bell-James, J. Overcoming legal barriers to coastal wetland restoration: lessons from Australia’s Blue Carbon methodology. Restor. Ecol. 31, e13780 (2022).

    Google Scholar 

  142. Bell-James, J., Foster, R. & Shumway, N. The permitting process for marine and coastal restoration: a barrier to achieving global restoration targets? Conserv. Sci. Pract. 5, e13050 (2023).

    Google Scholar 

  143. Bell-James, J., Fitzsimons, J. A. & Lovelock, C. E. Land tenure, ownership and use as barriers to coastal wetland restoration projects in Australia: recommendations and solutions. Environ. Manag. 72, 179–189 (2023).

    Google Scholar 

  144. Saunders, M. I. et al. Bright spots in coastal marine ecosystem restoration. Curr. Biol. 30, R1500–R1510 (2020).

    CAS  Google Scholar 

  145. Schindler, M. L. et al. The Blue Carbon Handbook: Blue Carbon as a Nature-based Solution for Climate Action and Sustainable Development (High Level Panel for a Sustainable Ocean Economy, 2023).

  146. Duarte de Paula Costa, M. & Macreadie, P. I. The evolution of blue carbon science. Wetlands 42, 109 (2022).

    Google Scholar 

  147. Rogalla von Bieberstein, K. et al. Improving collaboration in the implementation of global biodiversity conventions. Conserv. Biol. 33, 821–831 (2019).

    Google Scholar 

  148. Dawson, N. M. et al. The role of indigenous peoples and local communities in effective and equitable conservation. Ecol. Soc. 26, 19 (2021).

    Google Scholar 

  149. Rossbach, S. et al. A tide of change: what we can learn from stories of marine conservation success. One Earth 6, 505–518 (2023).

    Google Scholar 

  150. Tanner, J. E. et al. Seagrass rehabilitation off metropolitan Adelaide: a case study of loss, action, failure and success. Ecol. Manag. Restor. 15, 168–179 (2014).

    Google Scholar 

  151. Herr, D., von Unger, M., Laffoley, D. & McGivern, A. Pathways for implementation of blue carbon initiatives. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 116–129 (2017).

    Google Scholar 

  152. Obura, D. The Kunming–Montreal Global Biodiversity Framework: business as usual or a turning point? One Earth 6, 77–80 (2023).

    Google Scholar 

  153. Bunting, P. et al. Global mangrove extent change 1996–2020: global mangrove watch version 3.0. Remote Sens. 14, 3657 (2022).

    Google Scholar 

  154. Mcowen, C. J. et al. A global map of saltmarshes. Biodivers. Data J. 5, e11764 (2017).

    Google Scholar 

  155. Jia, M. et al. Map** global distribution of mangrove forests at 10-m resolution. Sci. Bull. 68, 1306–1316 (2023).

    Google Scholar 

  156. Friess, D. A. et al. The state of the world’s mangrove forests: past, present, and future. Annu. Rev. Environ. Resour. 44, 89–115 (2019).

    Google Scholar 

  157. Duarte, C. M., Dennison, W. C., Orth, R. J. & Carruthers, T. J. The charisma of coastal ecosystems: addressing the imbalance. Estuar. Coast. 31, 233–238 (2008).

    Google Scholar 

  158. McKenzie, L. J. et al. The global distribution of seagrass meadows. Environ. Res. Lett. 15, 074041 (2020).

    Google Scholar 

  159. United Nations. UN Decade on Ecosystem Restoration (2021–2030) (UN, 2019).

  160. UN. UN Decade of Ocean Science for Sustainable Development (2021–2030) (UN, 2018).

  161. UNEP. Regional Seas Strategic Directions (RSSD) 2022–2025 (UNEP, 2021).

  162. UN. Transforming Our World: The 2030 Agenda for Sustainable Development (UN, 2015).

  163. UNEP & CBD. The Strategic Plan for Biodiversity 2011–2020 and the Aichi Biodiversity Targets (UNEP & CBD, 2010).

  164. Ramsar Convention Secretariat. The Fourth Ramsar Strategic Plan 2016–2024. Ramsar Handbooks for the Wise Use of Wetlands 5th edn (RCS, 2016).

  165. UNEP-WCMC, Short FT Global distribution of seagrasses (version 7.1). https://doi.org/10.34892/x6r3-d211 (2021).

Download references

Acknowledgements

This research was funded by King Abdullah University of Science and Technology with funding provided to C.M.D. (BAS/1/1071-01-01). The authors thank S. Schmidt-Roach for constructive feedback.

Author information

Authors and Affiliations

Authors

Contributions

C.M.D. conceived the idea. C.F., A.S. and H.M. structured the study. C.F. and C.M.D. wrote the original manuscript with contributions from A.S. and H.M. All authors contributed to reviewing and editing of the manuscript.

Corresponding author

Correspondence to Chuancheng Fu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Christina Buelow, Justine Bell-James and Nathan Waltham for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related Links

Carbon credit prices: https://carboncredits.com/carbon-prices-today/

Ocean data viewer: https://data.unep-wcmc.org/

Protected Planet: https://www.protectedplanet.net/en/thematic-areas/marine-protected-areas

The Bonn Challenge: https://www.bonnchallenge.org/

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, C., Steckbauer, A., Mann, H. et al. Achieving the Kunming–Montreal global biodiversity targets for blue carbon ecosystems. Nat Rev Earth Environ 5, 538–552 (2024). https://doi.org/10.1038/s43017-024-00566-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-024-00566-6

  • Springer Nature Limited

Navigation