Log in

Monitoring, trends and impacts of light pollution

  • Review Article
  • Published:

From Nature Reviews Earth & Environment

View current issue Sign up to alerts

Abstract

Light pollution has increased globally, with 80% of the total population now living under light-polluted skies. In this Review, we elucidate the scope and importance of light pollution and discuss techniques to monitor it. In urban areas, light emissions from sources such as street lights lead to a zenith radiance 40 times larger than that of an unpolluted night sky. Non-urban areas account for over 50% of the total night-time light observed by satellites, with contributions from sources such as transportation networks and resource extraction. Artificial light can disturb the migratory and reproductive behaviours of animals even at the low illuminances from diffuse skyglow. Additionally, lighting (indoor and outdoor) accounts for 20% of global electricity consumption and 6% of CO2 emissions, leading to indirect environmental impacts and a financial cost. However, existing monitoring techniques can only perform a limited number of measurements throughout the night and lack spectral and spatial resolution. Therefore, satellites with improved spectral and spatial resolution are needed to enable time series analysis of light pollution trends throughout the night.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Sources of light at night.
Fig. 2: Approaches to measure light at night.
Fig. 3: Global and local radiance trends.
Fig. 4: The direct and indirect effects of light pollution.
Fig. 5: Light emissions as a proxy for human activity.

Similar content being viewed by others

Data availability

The Radiance Light Trends webtool used to obtain the data plotted in Fig. 5 is available at https://doi.org/10.5880/GFZ.1.4.2019.001.

References

  1. Hänel, A. et al. Measuring night sky brightness: methods and challenges. J. Quant. Spectrosc. Radiat. Transf. 205, 278–290 (2018).

    Article  Google Scholar 

  2. Pun, C. S. J., So, C. W., Leung, W. Y. & Wong, C. F. Contributions of artificial lighting sources on light pollution in Hong Kong measured through a night sky brightness monitoring network. J. Quant. Spectrosc. Radiat. Transf. 139, 90–108 (2014).

    Article  CAS  Google Scholar 

  3. Gaston, K. J. & Sánchez de Miguel, A. Environmental impacts of artificial light at night. Ann. Rev. Environ. Resour. 47, 373–398 (2022).

    Article  Google Scholar 

  4. Owens, A. C. et al. Light pollution is a driver of insect declines. Biol. Conserv. 241, 108259 (2020).

    Article  Google Scholar 

  5. Johnston, D. W. & Haines, T. P. Analysis of mass bird mortality in October, 1954. Auk 74, 447–458 (1957).

    Article  Google Scholar 

  6. Doren, B. M. V. et al. High-intensity urban light installation dramatically alters nocturnal bird migration. Proc. Natl Acad. Sci. USA 114, 11175–11180 (2017).

    Article  Google Scholar 

  7. Korner, P., von Maravic, I. & Haupt, H. Birds and the ‘Post Tower’ in Bonn: a case study of light pollution. J. Ornithol. 163, 827–841 (2022).

    Article  Google Scholar 

  8. Ffrench-Constant, R. H. et al. Light pollution is associated with earlier tree budburst across the United Kingdom. Proc. R. Soc. B Biol. Sci. 283, 20160813 (2016).

    Article  Google Scholar 

  9. Lian, X. et al. Artificial light pollution inhibits plant phenology advance induced by climate warming. Environ. Pollut. 291, 118110 (2021).

    Article  CAS  Google Scholar 

  10. Meng, L. Green with phenology. Science 374, 1065–1066 (2021).

    Article  CAS  Google Scholar 

  11. Knop, E. et al. Artificial light at night as a new threat to pollination. Nature 548, 206–209 (2017).

    Article  CAS  Google Scholar 

  12. Rydell, J., Eklöf, J. & Sánchez-Navarro, S. Reply to ‘Comment on age of enlightenment: long-term effects of outdoor aesthetic lights on bats in churches’ by T. Onkelinx. R. Soc. Open Sci. 4, 171630 (2017).

    Article  Google Scholar 

  13. Camacho, L. F., Barragàn, G. & Espinosa, S. Local ecological knowledge reveals combined landscape effects of light pollution, habitat loss, and fragmentation on insect populations. Biol. Conserv. 262, 109311 (2021).

    Article  Google Scholar 

  14. Degen, T. et al. Street lighting: sex-independent impacts on moth movement. J. Anim. Ecol. 85, 1352–1360 (2016).

    Article  Google Scholar 

  15. Moore, M. V., Pierce, S. M., Walsh, H. M., Kvalvik, S. K. & Lim, J. D. Urban light pollution alters the diel vertical migration of Daphnia. Int. Ver. Theor. Angew. Limnol. Verh. 27, 779–782 (2000).

    Google Scholar 

  16. Shith, S. et al. Does light pollution affect nighttime ground-level ozone concentrations? Atmosphere 13, 1844 (2022).

    Article  CAS  Google Scholar 

  17. Tsao, J. Y. & Waide, P. The world’s appetite for light: empirical data and trends spanning three centuries and six continents. LEUKOS 6, 259–281 (2010).

    Article  Google Scholar 

  18. Almeida, A. D., Santos, B., Paolo, B. & Quicheron, M. Solid state lighting review — potential and challenges in Europe. Renew. Sustain. Energy Rev. 34, 30–48 (2014).

    Article  Google Scholar 

  19. Cinzano, P. & Falchi, F. Quantifying light pollution. J. Quant. Spectrosc. Radiat. Transf. 139, 13–20 (2014).

    Article  CAS  Google Scholar 

  20. Barà, S., Bao-Varela, C. & Falchi, F. Light pollution and the concentration of anthropogenic photons in the terrestrial atmosphere. Atmos. Pollut. Res. 13, 101541 (2022).

    Article  Google Scholar 

  21. Gaston, K. J. et al. Pervasiveness of biological impacts of artificial light at night. Integr. Comp. Biol. 61, 1098–1110 (2021).

    Article  Google Scholar 

  22. Sánchez de Miguel, A., Bennie, J., Rosenfeld, E., Dzurjak, S. & Gaston, K. J. First estimation of global trends in nocturnal power emissions reveals acceleration of light pollution. Remote Sens. 13, 3311 (2021).

    Article  Google Scholar 

  23. Falchi, F. et al. The new world atlas of artificial night sky brightness. Sci. Adv. 2, e1600377 (2016).

    Article  Google Scholar 

  24. IEA. Tracking SDG7: the energy progress report, 2022 (IEA, 2022).

  25. IEA. DG7: data and projections (IEA, 2023).

  26. Fotios, S. & Gibbons, R. Road lighting research for drivers and pedestrians: the basis of luminance and illuminance recommendations. Light. Res. Technol. 50, 154–186 (2018).

    Article  Google Scholar 

  27. Edensor, T. The gloomy city: rethinking the relationship between light and dark. Urban Stud. 52, 422–438 (2013).

    Article  Google Scholar 

  28. Morgan-Taylor, M. Regulating light pollution: more than just the night sky. Science 380, 1118–1120 (2023).

    Article  CAS  Google Scholar 

  29. Welsh, B. C., Farrington, D. P. & Douglas, S. The impact and policy relevance of street lighting for crime prevention: a systematic review based on a half-century of evaluation research. Criminol. Public Policy 21, 739–765 (2022).

    Article  Google Scholar 

  30. Perkins, C. et al. What is the effect of reduced street lighting on crime and road traffic injuries at night? A mixed-methods study. Public Health Res. 3, 1–108 (2015).

    Article  Google Scholar 

  31. Marchant, P. R. & Norman, P. D. To determine if changing to white light street lamps improves road safety: a multilevel longitudinal analysis of road traffic collisions during the relighting of Leeds, a UK city. Appl. Spat. Anal. Policy 15, 1583–1608 (2022).

    Article  Google Scholar 

  32. Levin, N. et al. Remote sensing of night lights: a review and an outlook for the future. Remote Sens. Environ. 237, 111443 (2020).

    Article  Google Scholar 

  33. Combs, C. L. & Miller, S. D. A review of the far-reaching usage of low-light nighttime data. Remote Sens. 15, 623 (2023).

    Article  Google Scholar 

  34. Hao, Q. et al. Exploring the construction of urban artificial light ecology: a systematic review and the future prospects of light pollution. Environ. Sci. Pollut. Res. 30, 1–26 (2023).

    Article  Google Scholar 

  35. Ministry of the Environment of the Czech Republic. Light pollution reduction measures in Europe (2022).

  36. Widmer, K., Beloconi, A., Marnane, I. & Vounatsou, P. Review and assessment of available information on light pollution in Europe (Eionet Report – ETC HE 2022/8) (European Environment Agency, 2022).

  37. Barentine, J. C., Walczak, K., Gyuk, G., Tarr, C. & Longcore, T. A case for a new satellite mission for remote sensing of night lights. Remote Sens. 13, 2294 (2021).

    Article  Google Scholar 

  38. Hölker, F. et al. The dark side of light: a transdisciplinary research agenda for light pollution policy. Ecol. Soc. 15, 13 (2010).

    Article  Google Scholar 

  39. Zielinska-Dabkowska, K. M., Schernhammer, E. S., Hanifin, J. P. & Brainard, G. C. Reducing nighttime light exposure in the urban environment to benefit human health and society. Science 380, 1130–1135 (2023).

    Article  CAS  Google Scholar 

  40. Kyba, C. C. M., Öner Altıntaş, Y., Walker, C. E. & Newhouse, M. Citizen scientists report global rapid reductions in the visibility of stars from 2011 to 2022. Science 379, 265–268 (2023).

    Article  CAS  Google Scholar 

  41. Linares, H. et al. Assessing light pollution in vast areas: zenith sky brightness maps of Catalonia. J. Quant. Spectrosc. Radiat. Transf. 309, 108678 (2023).

    Article  CAS  Google Scholar 

  42. Aubé, M., Simoneau, A. & Kollàth, Z. HABLAN: multispectral and multiangular remote sensing of artificial light at night from high altitude balloons. J. Quant. Spectrosc. Radiat. Transf. 306, 108606 (2023).

    Article  Google Scholar 

  43. Linares, H. et al. Night sky brightness simulation over Montsec protected area. J. Quant. Spectrosc. Radiat. Transf. 249, 106990 (2020).

    Article  CAS  Google Scholar 

  44. Abelson, E. et al. Ecological aspects and measurement of anthropogenic light at night. SSRN Electron. J. https://doi.org/10.2139/ssrn.4353905 (2023).

  45. Treanor, P. J. A simple propagation law for artificial night-sky illumination. Observatory 93, 117–120 (1973).

    Google Scholar 

  46. Berry, R. L. Light pollution in southern Ontario. J. R. Astron. Soc. Can. 70, 97 (1976).

    Google Scholar 

  47. Walker, M. F. The effects of urban lighting on the brightness of the night sky. Publ. Astron. Soc. Pac. 89, 405 (1977).

    Article  Google Scholar 

  48. Garstang, R. H. Model for artificial night-sky illumination. Publ. Astron. Soc. Pac. 98, 364 (1986).

    Article  CAS  Google Scholar 

  49. Aubé, M. & Simoneau, A. New features to the night sky radiance model Illumina: hyperspectral support, improved obstacles and cloud reflection. J. Quant. Spectrosc. Radiat. Transf. 211, 25–34 (2018).

    Article  Google Scholar 

  50. Kocifaj, M. Multiple scattering contribution to the diffuse light of a night sky: a model which embraces all orders of scattering. J. Quant. Spectrosc. Radiat. Transf. 206, 260–272 (2018).

    Article  CAS  Google Scholar 

  51. Jechow, A. et al. Design and implementation of an illumination system to mimic skyglow at ecosystem level in a large-scale lake enclosure facility. Sci. Rep. 11, 23478 (2021).

    Article  CAS  Google Scholar 

  52. Linares, H. et al. Modelling the night sky brightness and light pollution sources of Montsec protected area. J. Quant. Spectrosc. Radiat. Transf. 217, 178–188 (2018).

    Article  CAS  Google Scholar 

  53. Aubé, M. & Kocifaj, M. Using two light-pollution models to investigate artificial sky radiances at Canary Islands observatories. Mon. Not. R. Astron. Soc. 422, 819–830 (2012).

    Article  Google Scholar 

  54. Walczak, K. et al. The GONet (ground observing network) camera: an inexpensive light pollution monitoring system. Int. J. Sustain. Light. 23, 7–19 (2021).

    Article  Google Scholar 

  55. Jechow, A., Kyba, C. & Hölker, F. Beyond all-sky: assessing ecological light pollution using multi-spectral full-sphere fisheye lens imaging. J. Imaging 5, 46 (2019).

    Article  Google Scholar 

  56. Nievas, M. & Zamorano, J. Absolute photometry and night sky brightness with all-sky cameras. MSc thesis, Univ. Complutense de Madrid (2013).

  57. Kolláth, Z. Measuring and modelling light pollution at the Zselic Starry Sky Park. J. Phys. Conf. Ser. 218, 012001 (2010).

    Article  Google Scholar 

  58. Bertolo, A., Binotto, R., Ortolani, S. & Sapienza, S. Measurements of night sky brightness in the Veneto region of Italy: sky quality meter network results and differential photometry by digital single lens reflex. J. Imaging 5, 56 (2019).

    Article  Google Scholar 

  59. Celino, I., Calegari, G. R., Scrocca, M., Zamorano, J. & Guardia, E. G. Participant motivation to engage in a citizen science campaign: the case of the TESS network. J. Sci. Commun. 20, A03 (2021).

    Article  Google Scholar 

  60. Tilve, V. et al. Estimating all-sky night brightness maps from finite sets of SQM measurements. Highlights Span. Astrophys. VIII 1, 874–874 (2015).

    Google Scholar 

  61. Zamorano, J., Sánchez de Miguel, A., Nievas, M. & Tapia, C. NixNox Procedure to Build Night Sky Brightness Maps from SQM Photometers Observations (Universidad Complutense de Madrid, 2014); https://docta.ucm.es/entities/publication/ab6eb18d-0597-49ee-af6b-2d445c712257.

  62. Marseille, C., Aubé, M., Barreto, Á. & Simoneau, A. Remote sensing of aerosols at night with the CoSQM sky brightness data. Remote Sens. 13, 4623 (2021).

    Article  Google Scholar 

  63. Ribas, S. J. Caracterització de la Contaminació Lumínica en Zones Protegides i Urbanes. PhD thesis, Univ. de Barcelona (2016).

  64. Linares Arroyo, H. Light Pollution Study and Characterization in Catalonia. PhD thesis, Univ. de Barcelona (2021).

  65. Gokus, A. et al. Nachtlichter app: a citizen science tool for documenting outdoor light sources in public spaces. Int. J. Sustain. Light. 25, 24–66 (2023).

    Article  Google Scholar 

  66. Sanchez de Miguel, A., Kyba, C. C. M., Zamorano, J., Gallego, J. & Gaston, K. J. The nature of the diffuse light near cities detected in nighttime satellite imagery. Sci. Rep. 10, 7829 (2020).

    Article  CAS  Google Scholar 

  67. Rodríguez, A., Rodríguez, B., Acosta, Y. & Negro, J. J. Tracking flights to investigate seabird mortality induced by artificial lights. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2021.786557 (2022).

  68. Kyba, C. C. M. et al. Artificially lit surface of Earth at night increasing in radiance and extent. Sci. Adv. 3, e1701528 (2017).

    Article  Google Scholar 

  69. Sánchez de Miguel, A. et al. Colour remote sensing of the impact of artificial light at night (I): the potential of the International Space Station and other DSLR-based platforms. Remote Sens. Environ. 224, 92–103 (2019).

    Article  Google Scholar 

  70. Elvidge, C. D. et al. The VIIRS Day/Night Band: a flicker meter in space? Remote Sens. 14, 1316 (2022).

    Article  Google Scholar 

  71. Coesfeld, J. et al. Variation of individual location radiance in VIIRS DNB monthly composite images. Remote Sens. 10, 1964 (2018).

    Article  Google Scholar 

  72. Li, T. et al. Continuous monitoring of nighttime light changes based on daily NASA’s Black Marble product suite. Remote Sens. Environ. 282, 113269 (2022).

    Article  Google Scholar 

  73. Tong, K. P. et al. Angular distribution of upwelling artificial light in Europe as observed by Suomi-NPP satellite. J. Quant. Spectrosc. Radiat. Transf. 249, 107009 (2020).

    Article  CAS  Google Scholar 

  74. Kyba, C. et al. Direct measurement of the contribution of street lighting to satellite observations of nighttime light emissions from urban areas. Light. Res. Technol. 53, 189–211 (2020).

    Article  Google Scholar 

  75. Sanchez de Miguel, A. et al. Atlas of astronaut photos of Earth at night. Astron. Geophys. 55, 4.36 (2014).

    Article  Google Scholar 

  76. Guo, H. et al. SDGSAT-1: the world’s first scientific satellite for Sustainable Development Goals. Sci. Bull. 68, 34–38 (2022).

    Article  Google Scholar 

  77. Cheng, B. et al. Automated extraction of street lights from JL1-3B nighttime light data and assessment of their solar energy potential. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 13, 675–684 (2020).

    Article  Google Scholar 

  78. Simons, A. L., Yin, X. & Longcore, T. High correlation but high scale-dependent variance between satellite measured night lights and terrestrial exposure. Environ. Res. Commun. 2, 021006 (2020).

    Article  Google Scholar 

  79. Smith, R. A., Gagné, M. & Fraser, K. C. Pre-migration artificial light at night advances the spring migration timing of a trans-hemispheric migratory songbird. Environ. Pollut. 269, 116136 (2021).

    Article  CAS  Google Scholar 

  80. Robert, K. A., Lesku, J. A., Partecke, J. & Chambers, B. Artificial light at night desynchronizes strictly seasonal reproduction in a wild mammal. Proc. R. Soc. B Biol. Sci. 282, 20151745 (2015).

    Article  Google Scholar 

  81. Storms, M. et al. The rising moon promotes mate finding in moths. Commun. Biol. 5, 1234567890 (2022).

    Article  Google Scholar 

  82. Luginbuhl, C. B., Boley, P. A. & Davis, D. R. The impact of light source spectral power distribution on sky glow. J. Quant. Spectrosc. Radiat. Transf. 139, 21–26 (2014).

    Article  CAS  Google Scholar 

  83. Cox, D., Sánchez de Miguel, A., Bennie, J., Dzurjak, S. & Gaston, K. Majority of artificially lit Earth surface associated with the non-urban population. Sci. Total Environ. 841, 156782 (2022).

    Article  CAS  Google Scholar 

  84. Cox, D. T., Sánchez de Miguel, A., Dzurjak, S. A., Bennie, J. & Gaston, K. J. National scale spatial variation in artificial light at night. Remote Sens. 12, 1591 (2020).

    Article  Google Scholar 

  85. Falchi, F. et al. Light pollution in USA and Europe: the good, the bad and the ugly. J. Environ. Manag. 248, 109227 (2019).

    Article  CAS  Google Scholar 

  86. Aubé, M., Kocifaj, M., Zamorano, J., Lamphar, H. S. & Sanchez de Miguel, A. The spectral amplification effect of clouds to the night sky radiance in Madrid. J. Quant. Spectrosc. Radiat. Transf. 181, 11–23 (2016).

    Article  Google Scholar 

  87. Jechow, A. et al. Imaging and map** the impact of clouds on skyglow with all-sky photometry. Sci. Rep. 7, 6741 (2017).

    Article  Google Scholar 

  88. Ribas, S. J., Torra, J., Paricio, S. & Canal-Domingo, R. How clouds are amplifying (or not) the effects of ALAN. Int. J. Sustain. Light. 18, 32–39 (2016).

    Article  Google Scholar 

  89. Jechow, A. & Hölker, F. Snowglow — the amplification of skyglow by snow and clouds can exceed full moon illuminance in suburban areas. J. Imaging 5, 69 (2019).

    Article  Google Scholar 

  90. Kyba, C. C. M., Ruhtz, T., Fischer, J. & Hölker, F. Red is the new black: how the colour of urban skyglow varies with cloud cover. Mon. Not. R. Astron. Soc. 425, 701–708 (2012).

    Article  Google Scholar 

  91. European Commission, Joint Research Centre, Zissis G., Bertoldi, P., Serrenho, T. Update on the status of LED-lighting world market since 2018. https://data.europa.eu/doi/10.2760/759859 (Publications Office of the European Union, 2021).

  92. Kuechly, H. U. et al. Aerial survey and spatial analysis of sources of light pollution in Berlin, Germany. Remote Sens. Environ. 126, 39–50 (2012).

    Article  Google Scholar 

  93. Barà, S. et al. Estimating the relative contribution of streetlights, vehicles, and residential lighting to the urban night sky brightness. Light. Res. Technol. 51, 1092–1107 (2018).

    Article  Google Scholar 

  94. Luginbuhl, C. B. et al. From the ground up II: sky glow and near-ground artificial light propagation in Flagstaff, Arizona. Publ. Astron. Soc. Pac. 121, 204–212 (2009).

    Article  Google Scholar 

  95. Elvidge, C. D. et al. A fifteen year record of global natural gas flaring derived from satellite data. Energies 2, 595–622 (2009).

    Article  CAS  Google Scholar 

  96. Boslett, A., Hill, E., Ma, L. & Zhang, L. Rural light pollution from shale gas development and associated sleep and subjective well-being. Resour. Energy Econ. 64, 101220 (2021).

    Article  Google Scholar 

  97. Barentine, J. C. What does lettuce have to do with my night sky? DarkSky International https://www.darksky.org/greenhouse-light-pollution/ (2020).

  98. Walczak, K. A land of perpetual false dawn. DarkSky International https://www.darksky.org/light-pollution-industrial-greenhouses/ (2021).

  99. Guetté, A., Godet, L., Juigner, M. & Robin, M. Worldwide increase in artificial light at night around protected areas and within biodiversity hotspots. Biol. Conserv. 223, 97–103 (2018).

    Article  Google Scholar 

  100. Koen, E. L., Minnaar, C., Roever, C. L. & Boyles, J. G. Emerging threat of the 21st century lightscape to global biodiversity. Glob. Change Biol. 24, 2315–2324 (2018).

    Article  Google Scholar 

  101. Garrett, J. K., Donald, P. F. & Gaston, K. J. Skyglow extends into the world’s key biodiversity areas. Anim. Conserv. 23, 153–159 (2019).

    Article  Google Scholar 

  102. Hölker, F., Jechow, A., Schroer, S., Tockner, K. & Gessner, M. O. Light pollution of freshwater ecosystems: principles, ecological impacts and remedies. Philos. Trans. R. Soc. B Biol. Sci. 378, 20220360 (2023).

    Article  Google Scholar 

  103. Davies, T. W., Duffy, J. P., Bennie, J. & Gaston, K. J. The nature, extent, and ecological implications of marine light pollution. Front. Ecol. Environ. 12, 347–355 (2014).

    Article  Google Scholar 

  104. Rousseau, Y., Watson, R. A., Blanchard, J. L. & Fulton, E. A. Evolution of global marine fishing fleets and the response of fished resources. Proc. Natl Acad. Sci. USA 116, 12238–12243 (2019).

    Article  CAS  Google Scholar 

  105. UNCTAD. Handbook of Statistics 2020, United Nations Conference on Trade and Development (UN, 2020).

  106. Mgana, H. et al. Adoption and consequences of new light-fishing technology (LEDs) on Lake Tanganyika, East Africa. PLoS ONE 14, e0216580 (2019).

    Article  CAS  Google Scholar 

  107. Nguyen, K. Q. & Winger, P. D. Artificial light in commercial industrialized fishing applications: a review. Rev. Fish. Sci. Aquac. 27, 106–126 (2018).

    Article  Google Scholar 

  108. Elvidge, C. D. et al. Rating the effectiveness of fishery closures with visible infrared imaging radiometer suite boat detection data. Front. Mar. Sci. 5, 132 (2018).

    Article  Google Scholar 

  109. Dobler, G. et al. Dynamics of the urban lightscape. Inf. Syst. 54, 115–126 (2015).

    Article  Google Scholar 

  110. Robles, J. et al. Evolution of brightness and color of the night sky in Madrid. Remote Sens. 13, 1511 (2021).

    Article  Google Scholar 

  111. Romàn, M. O. & Stokes, E. C. Holidays in lights: tracking cultural patterns in demand for energy services. Earth’s Future 3, 182–205 (2015).

    Article  Google Scholar 

  112. Stathakis, D. & Baltas, P. Seasonal population estimates based on night-time lights. Comput. Environ. Urban Syst. 68, 133–141 (2018).

    Article  Google Scholar 

  113. Zhang, C., Pei, Y., Li, J., Qin, Q. & Yue, J. Application of Luojia 1-01 nighttime images for detecting the light changes for the 2019 spring festival in western cities, China. Remote Sens. 12, 1416 (2020).

    Article  Google Scholar 

  114. Molthan, A. & Jedlovec, G. Satellite observations monitor outages from superstorm Sandy. Eos Trans. Am. Geophys. Union 94, 53–54 (2013).

    Article  Google Scholar 

  115. Romàn, M. O. et al. Satellite-based assessment of electricity restoration efforts in Puerto Rico after hurricane Maria. PLoS ONE 14, e0218883 (2019).

    Article  Google Scholar 

  116. Kocifaj, M. Towards a comprehensive city emission function (CCEF). J. Quant. Spectrosc. Radiat. Transf. 205, 253–266 (2018).

    Article  CAS  Google Scholar 

  117. Levin, N. & Zhang, Q. A global analysis of factors controlling VIIRS nighttime light levels from densely populated areas. Remote Sens. Environ. 190, 366–382 (2017).

    Article  Google Scholar 

  118. Kocifaj, M. & Barà, S. Night-time monitoring of the aerosol content of the lower atmosphere by differential photometry of the anthropogenic skyglow. Mon. Not. R. Astron. Soc. Lett. 500, L47–L51 (2020).

    Article  Google Scholar 

  119. Posch, T., Binder, F. & Puschnig, J. Systematic measurements of the night sky brightness at 26 locations in Eastern Austria. J. Quant. Spectrosc. Radiat. Transf. 211, 144–165 (2018).

    Article  CAS  Google Scholar 

  120. Pritchard, S. B. The trouble with darkness: NASA’s Suomi satellite images of Earth at night. Environ. Hist. 22, 312–330 (2017).

    Article  Google Scholar 

  121. Barà, S., Bao-Varela, C. & Kocifaj, M. Modeling the artificial night sky brightness at short distances from streetlights. J. Quant. Spectrosc. Radiat. Transf. 296, 108456 (2023).

    Article  Google Scholar 

  122. Barà, S. & Bao-Varela, C. Skyglow inside your eyes: intraocular scattering and artificial brightness of the night sky. Int. J. Sustain. Light. 25, 1–9 (2023).

    Article  Google Scholar 

  123. Sánchez de Miguel, A., Bennie, J., Rosenfeld, E., Dzurjak, S. & Gaston, K. J. Environmental risks from artificial nighttime lighting widespread and increasing across Europe. Sci. Adv. 8, eabl6891 (2022).

    Article  Google Scholar 

  124. Sánchez de Miguel, A. et al. Sky quality meter measurements in a colour-changing world. Mon. Not. R. Astron. Soc. 467, 2966–2979 (2017).

    Article  Google Scholar 

  125. Kinney, J. A. S. Comparison of scotopic, mesopic, and photopic spectral sensitivity curves. J. Opt. Soc. Am. 48, 185–190 (1958).

    Article  CAS  Google Scholar 

  126. Rea, M., Bullough, J., Freyssinier-Nova, J. & Bierman, A. A proposed unified system of photometry. Light. Res. Technol. 36, 85–109 (2004).

    Article  Google Scholar 

  127. Crumey, A. Human contrast threshold and astronomical visibility. Mon. Not. R. Astron. Soc. 442, 2600–2619 (2014).

    Article  Google Scholar 

  128. Kollàth, Z., Dömény, A., Kollàth, K. & Nagy, B. Qualifying lighting remodelling in a Hungarian city based on light pollution effects. J. Quant. Spectrosc. Radiat. Transf. 181, 46–51 (2016).

    Article  Google Scholar 

  129. Hung, L.-W., Anderson, S. J., Pipkin, A. & Fristrup, K. Changes in night sky brightness after a countywide LED retrofit. J. Environ. Manag. 292, 112776 (2021).

    Article  Google Scholar 

  130. Longcore, T. et al. Rapid assessment of lamp spectrum to quantify ecological effects of light at night. J. Exp. Zool. A Ecol. Integr. Physiol. 329, 511–521 (2018).

    Article  Google Scholar 

  131. McCallum, I. et al. Estimating global economic well-being with unlit settlements. Nat. Commun. 13, 2459 (2022).

    Article  CAS  Google Scholar 

  132. Barentine, J. C. et al. Skyglow changes over Tucson, Arizona, resulting from a municipal LED street lighting conversion. J. Quant. Spectrosc. Radiat. Transf. 212, 10–23 (2018).

    Article  CAS  Google Scholar 

  133. Aubé, M. & Roby, J. Sky brightness levels before and after the creation of the first International Dark Sky Reserve, Mont-Mégantic Observatory, Québec, Canada. J. Quant. Spectrosc. Radiat. Transf. 139, 52–63 (2014).

    Article  Google Scholar 

  134. Kyba, C. C. M., Hänel, A. & Hölker, F. Redefining efficiency for outdoor lighting. Energy Environ. Sci. 7, 1806–1809 (2014).

    Article  Google Scholar 

  135. Fouquet, R. & Pearson, P. Seven centuries of energy services: the price and use of light in the United Kingdom (1300-2000). Energy J. 27, 138–178 (2006).

    Article  Google Scholar 

  136. Tsao, J. Y., Saunders, H. D., Creighton, J. R., Coltrin, M. E. & Simmons, J. A. Solid-state lighting: an energy-economics perspective. J. Phys. D Appl. Phys. 43, 354001 (2010).

    Article  Google Scholar 

  137. Bachanek, K. H., Tundys, B., Wiśniewski, T., Puzio, E. & Maroušková, A. Intelligent street lighting in a smart city concepts — a direction to energy saving in cities: an overview and case study. Energies 14, 3018 (2021).

    Article  Google Scholar 

  138. Kyba, C. C. M., Mohar, A., Pintar, G. & Stare, J. Reducing the environmental footprint of church lighting: matching facade shape and lowering luminance with the EcoSky LED. Int. J. Sustain. Light. 20, 1 (2018).

    Article  Google Scholar 

  139. Schroer, S. & Hölker, F. in Handbook of Advanced Lighting Technology 1–17 (Springer, 2014).

  140. Schulte-Römer, N., Meier, J., Söding, M. & Dannemann, E. The LED paradox: how light pollution challenges experts to reconsider sustainable lighting. Sustainability 11, 6160 (2019).

    Article  Google Scholar 

  141. Zielińska-Dabkowska, K. M., Xavia, K. & Bobkowska, K. Assessment of citizens’ actions against light pollution with guidelines for future initiatives. Sustainability 12, 4997 (2020).

    Article  Google Scholar 

  142. Ngarambe, J., Lim, H. S. & Kim, G. Light pollution: is there an environmental Kuznets curve? Sustain. Cities Soc. 42, 337–343 (2018).

    Article  Google Scholar 

  143. Barà, S., Falchi, F., Lima, R. C. & Pawley, M. Can we illuminate our cities and (still) see the stars? Int. J. Sustain. Light. 23, 58–69 (2021).

    Article  Google Scholar 

  144. Dobler, G., Ghandehari, M., Koonin, S. & Sharma, M. A hyperspectral survey of New York City lighting technology. Sensors 16, 2047 (2016).

    Article  Google Scholar 

  145. Zschorn, M. & Mattern, J. Counting lights for sustainability — insights from the citizen science project Nachtlicht-BüHNE. In Proc. Austrian Citizen Science Conference 2022 – PoS(ACSC2022) (Sissa Medialab, 2023).

  146. Muñoz-Gil, G., Dauphin, A., Beduini, F. A. & Sánchez de Miguel, A. Citizen science to assess light pollution with mobile phones. Remote Sens. 14, 4976 (2022).

    Article  Google Scholar 

  147. Riegel, K. W. Light pollution. Science 179, 1285–1291 (1973).

    Article  CAS  Google Scholar 

  148. Walker, M. F. The California site survey. Publ. Astron. Soc. Pac. 82, 672 (1970).

    Article  Google Scholar 

  149. Walker, M. F. Light pollution in California and Arizona. Publ. Astron. Soc. Pac. 85, 508 (1973).

    Article  Google Scholar 

  150. Kyba, C. C. M., Ruhtz, T., Fischer, J. & Hölker, F. Cloud coverage acts as an amplifier for ecological light pollution in urban ecosystems. PLoS ONE 6, e17307 (2011).

    Article  CAS  Google Scholar 

  151. Stark, H. et al. City lights and urban air. Nat. Geosci. 4, 730–731 (2011).

    Article  CAS  Google Scholar 

  152. Kylling, A. et al. Actinic flux determination from measurements of irradiance. J. Geophys. Res. Atmos. 108, 4506 (2003).

    Article  Google Scholar 

  153. Madronich, S. Photodissociation in the atmosphere: 1. Actinic flux and the effects of ground reflections and clouds. J. Geophys. Res. Atmos. 92, 9740–9752 (1987).

    Article  Google Scholar 

  154. Degen, T., Kollàth, Z. & Degen, J. X, Y, and Z: a bird’s eye view on light pollution. Ecol. Evol. 12, e9608 (2022).

    Article  Google Scholar 

  155. Hölker, F. et al. 11 pressing research questions on how light pollution affects biodiversity. Front. Ecol. Evol. 9, 767177 (2021).

    Article  Google Scholar 

  156. Grubisic, M. et al. Light pollution, circadian photoreception, and melatonin in vertebrate. Sustainability 11, 6400 (2019).

    Article  CAS  Google Scholar 

  157. Liu, J. A., Meléndez-Fernàndez, O. H., Bumgarner, J. R. & Nelson, R. J. Effects of light pollution on photoperiod-driven seasonality. Horm. Behav. 141, 105150 (2022).

    Article  Google Scholar 

  158. Lin, C.-H., Takahashi, S., Mulla, A. J. & Nozawa, Y. Moonrise timing is key for synchronized spawning in coral Dipsastraea speciosa. Proc. Natl Acad. Sci. USA 118, e2101985118 (2021).

    Article  CAS  Google Scholar 

  159. Gaston, K., Visser, M. & Hölker, F. The biological impacts of artificial light at night: the research challenge. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140133 (2015).

    Article  Google Scholar 

  160. Walbeek, T. J., Harrison, E. M., Gorman, M. R. & Glickman, G. L. Naturalistic intensities of light at night: a review of the potent effects of very dim light on circadian responses and considerations for translational research. Front. Neurol. 12, 625334 (2021).

    Article  Google Scholar 

  161. Gaston, K. J., Davies, T. W., Nedelec, S. L. & Holt, L. A. Impacts of artificial light at night on biological timings. Annu. Rev. Ecol. Evol. Syst. 48, 49–68 (2017).

    Article  Google Scholar 

  162. Silva, A. D., Valcu, M. & Kempenaers, B. Light pollution alters the phenology of dawn and dusk singing in common European songbirds. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140126 (2015).

    Article  Google Scholar 

  163. Dominoni, D. M., Jensen, J. K., Jong, M., Visser, M. E. & Spoelstra, K. Artificial light at night, in interaction with spring temperature, modulates timing of reproduction in a passerine bird. Ecol. Appl. 30, e02062 (2020).

    Article  Google Scholar 

  164. Meng, L. et al. Artificial light at night: an underappreciated effect on phenology of deciduous woody plants. PNAS Nexus 1, pgac046 (2022).

    Article  Google Scholar 

  165. Zheng, Q., Teo, H. C. & Koh, L. P. Artificial light at night advances spring phenology in the United States. Remote Sens. 13, 399 (2021).

    Article  Google Scholar 

  166. Bennie, J., Davies, T. W., Cruse, D. & Gaston, K. J. Ecological effects of artificial light at night on wild plants. J. Ecol. 104, 611–620 (2016).

    Article  Google Scholar 

  167. Evens, R. et al. Skyglow relieves a crepuscular bird from visual constraints on being active. Sci. Total Environ. 900, 165760 (2023).

    Article  CAS  Google Scholar 

  168. Kupprat, F., Hölker, F. & Kloas, W. Can skyglow reduce nocturnal melatonin concentrations in Eurasian perch? Environ. Pollut. 262, 114324 (2020).

    Article  CAS  Google Scholar 

  169. Foster, J. J. et al. Light pollution forces a change in dung beetle orientation behavior. Curr. Biol. 31, 3935–3942.e3 (2021).

    Article  Google Scholar 

  170. Berge, J. et al. Artificial light during the polar night disrupts arctic fish and zooplankton behaviour down to 200m depth. Commun. Biol. 3, 102 (2020).

    Article  Google Scholar 

  171. Dimitriadis, C., Fournari – Konstantinidou, I., Sourbès, L., Koutsoubas, D. & Mazaris, A. D. Reduction of sea turtle population recruitment caused by nightlight: evidence from the Mediterranean region. Ocean Coast. Manage. 153, 108–115 (2018).

    Article  Google Scholar 

  172. Weisshaupt, N., Leskinen, M., Moisseev, D. N. & Koistinen, J. Anthropogenic illumination as guiding light for nocturnal bird migrants identified by remote sensing. Remote Sens. 14, 1616 (2022).

    Article  Google Scholar 

  173. Hale, J. D., Fairbrass, A. J., Matthews, T. J., Davies, G. & Sadler, J. P. The ecological impact of city lighting scenarios: exploring gap crossing thresholds for urban bats. Glob. Change Biol. 21, 2467–2478 (2015).

    Article  Google Scholar 

  174. Korpach, A. M. et al. Urbanization and artificial light at night reduce the functional connectivity of migratory aerial habitat. Ecography 8, e05581 (2022).

    Article  Google Scholar 

  175. Ditmer, M. A., Stoner, D. C. & Carter, N. H. Estimating the loss and fragmentation of dark environments in mammal ranges from light pollution. Biol. Conserv. 257, 109135 (2021).

    Article  Google Scholar 

  176. Pérez Vega, C., Jechow, A., Campbell, J. A., Zielinska-Dabkowska, K. M. & Hölker, F. Light pollution from illuminated bridges as a potential barrier for migrating fish — linking measurements with a proposal for a conceptual model. Basic Appl. Ecol. 74, 1–12 (2024).

    Article  Google Scholar 

  177. Szaz, D. et al. Lamp-lit bridges as dual light-traps for the night-swarming mayfly, Ephoron virgo: interaction of polarized and unpolarized light pollution. PLoS ONE 10, e0121194 (2015).

    Article  Google Scholar 

  178. Stepanian, P. M. et al. Declines in an abundant aquatic insect, the burrowing mayfly, across major North American waterways. Proc. Natl Acad. Sci. USA 117, 2987–2992 (2020).

    Article  CAS  Google Scholar 

  179. Manfrin, A. et al. Artificial light at night affects organism flux across ecosystem boundaries and drives community structure in the recipient ecosystem. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2017.00061 (2017).

  180. McLaren, J. D. et al. Artificial light at night confounds broad-scale habitat use by migrating birds. Ecol. Lett. 21, 356–364 (2018).

    Article  Google Scholar 

  181. Hölker, F. et al. Microbial diversity and community respiration in freshwater sediments influenced by artificial light at night. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140130 (2015).

    Article  Google Scholar 

  182. Sanders, D. & Gaston, K. J. How ecological communities respond to artificial light at night. J. Exp. Zool. A Ecol. Integr. Physiol. 329, 394–400 (2018).

    Article  Google Scholar 

  183. Poulin, R. Light pollution may alter host–parasite interactions in aquatic ecosystems. Trends Parasitol. 39, 1050–1059 (2023).

    Article  CAS  Google Scholar 

  184. Nelson, T. R. et al. Riverine fish density, predator-prey interactions, and their relationships with artificial light at night. Ecosphere 13, e4261 (2022).

    Article  Google Scholar 

  185. Giavi, S., Fontaine, C. & Knop, E. Impact of artificial light at night on diurnal plant-pollinator interactions. Nat. Commun. 12, 1690 (2021).

    Article  CAS  Google Scholar 

  186. Hölker, F., Wolter, C., Perkin, E. & Tockner, K. Light pollution as a biodiversity threat. Trends Ecol. Evol. 25, 681-2 (2010).

    Article  Google Scholar 

  187. Lewanzik, D. & Voigt, C. C. Artificial light puts ecosystem services of frugivorous bats at risk. J. Appl. Ecol. 51, 388–394 (2014).

    Article  Google Scholar 

  188. Agboola, O. et al. A review on the impact of mining operation: monitoring, assessment and management. Results Eng. 8, 100181 (2020).

    Article  Google Scholar 

  189. Dale, A. T. et al. Preliminary comparative life-cycle impacts of streetlight technology. J. Infrastruct. Syst. 17, 193–199 (2011).

    Article  Google Scholar 

  190. Tähkämö, L., Räsänen, R.-S. & Halonen, L. Life cycle cost comparison of high-pressure sodium and light-emitting diode luminaires in street lighting. Int. J. Life Cycle Assess. 21, 137–145 (2015).

    Article  Google Scholar 

  191. Rahman, S. M., Pompidou, S., Alix, T. & Laratte, B. A review of LED lamp recycling process from the 10 R strategy perspective. Sustain. Prod. Consum. 28, 1178–1191 (2021).

    Article  Google Scholar 

  192. United Nations. UN Environment Programme: the rapid transition to energy efficient lighting: an integrated policy approach (UN, 2013).

  193. Noon, K. A., De Napoli, K., Swanton, P., Guedes, C. & Hamacher, D. The Routledge Handbook of Social Studies of Outer Space (Routledge, 2023).

  194. Streetlight-EPC. Streetlight-EPC - Guide. Joint Research CentreEuropean Energy Efficiency Platform https://e3p.jrc.ec.europa.eu/publications/streetlight-epc-guide (2015).

  195. Cupertino, M. D. C. et al. Light pollution: a systematic review about the impacts of artificial light on human health. Biol. Rhythm Res. 54, 263–275 (2022).

    Article  Google Scholar 

  196. Rybnikova, N. & Portnov, B. A. Population-level study links short-wavelength nighttime illumination with breast cancer incidence in a major metropolitan area. Chronobiol. Int. 35, 1198–1208 (2018).

    Article  Google Scholar 

  197. Stevens, R. G. Testing the light-at-night (LAN) theory for breast cancer causation. Chronobiol. Int. 28, 653–656 (2011).

    Article  Google Scholar 

  198. Garcia-Saenz, A. et al. Association between outdoor light-at-night exposure and colorectal cancer in Spain. Epidemiology 31, 718–727 (2020).

    Article  Google Scholar 

  199. Fonken, L. K. et al. Light at night increases body mass by shifting the time of food intake. Proc. Natl Acad. Sci. USA 107, 18664–18669 (2010).

    Article  CAS  Google Scholar 

  200. Spiegel, K., Knutson, K., Leproult, R., Tasali, E. & Cauter, E. V. Sleep loss: a novel risk factor for insulin resistance and type 2 diabetes. J. Appl. Physiol. 99, 2008–2019 (2005).

    Article  CAS  Google Scholar 

  201. Bedrosian, T. A., Fonken, L. K., Walton, J. C., Haim, A. & Nelson, R. J. Dim light at night provokes depression-like behaviors and reduces CA1 dendritic spine density in female hamsters. Psychoneuroendocrinology 36, 1062–1069 (2011).

    Article  Google Scholar 

  202. McIsaac, M. A., Sanders, E., Kuester, T., Aronson, K. J. & Kyba, C. C. M. The impact of image resolution on power, bias, and confounding. Environ. Epidemiol. 5, e145 (2021).

    Article  Google Scholar 

  203. Nadybal, S. M., Collins, T. W. & Grineski, S. E. Light pollution inequities in the continental United States: a distributive environmental justice analysis. Environ. Res. 189, 109959 (2020).

    Article  CAS  Google Scholar 

  204. **ao, Q. et al. Cross-sectional association between outdoor artificial light at night and sleep duration in middle-to-older aged adults: the NIH-AARP Diet and Health Study. Environ. Res. 180, 108823 (2020).

    Article  CAS  Google Scholar 

  205. Park, Y.-M. M., White, A. J., Jackson, C. L., Weinberg, C. R. & Sandler, D. P. Association of exposure to artificial light at night while slee** with risk of obesity in women. JAMA Intern. Med. 179, 1061 (2019).

    Article  Google Scholar 

  206. Mendoza, R. U. Why do the poor pay more? Exploring the poverty penalty concept. J. Int. Dev. 23, 1–28 (2011).

    Article  Google Scholar 

  207. Braubach, M. & Fairburn, J. Social inequities in environmental risks associated with housing and residential location — a review of evidence. Eur. J. Public Health 20, 36–42 (2010).

    Article  Google Scholar 

  208. Mullin, K., Mitchell, G., Nawaz, N. R. & Waters, R. D. Natural capital and the poor in England: towards an environmental justice analysis of ecosystem services in a high income country. Landsc. Urban Plan. 176, 10–21 (2018).

    Article  Google Scholar 

  209. Elvidge, C. D., Baugh, K. E., Kihn, E. A., Kroehl, H. W. & Davis, E. R. Map** city lights with nighttime data from the DMSP Operational Linescan System. Photogramm. Eng. Remote Sens. 63, 727–734 (1997).

    Google Scholar 

  210. Forbes, D. J. Multi-scale analysis of the relationship between economic statistics and DMSP-OLS night light images. GISci. Remote Sens. 50, 483–499 (2013).

    Article  Google Scholar 

  211. Kyba, C. et al. High-resolution imagery of Earth at night: new sources, opportunities and challenges. Remote Sens. 7, 1–23 (2014).

    Article  Google Scholar 

  212. Bouman, M. J. Luxury and control. J. Urban Hist. 14, 7–37 (1987).

    Article  Google Scholar 

  213. **ao, Q. et al. Artificial light at night and social vulnerability: an environmental justice analysis in the U.S. 2012-2019. Environ. Int. 178, 108096 (2023).

    Article  Google Scholar 

  214. Martinez, L. & Bordonaro, E. Lighting inequality in an urban context: design approach and case studies. IOP Conf. Ser. Earth Environ. Sci. 1099, 012006 (2022).

    Article  Google Scholar 

  215. Mann, M., Melaas, E. & Malik, A. Using VIIRS Day/Night Band to measure electricity supply reliability: preliminary results from Maharashtra, India. Remote Sens. 8, 711 (2016).

    Article  Google Scholar 

  216. Zhou, Y., Li, X., Asrar, G. R., Smith, S. J. & Imhoff, M. A global record of annual urban dynamics (1992–2013) from nighttime lights. Remote Sens. Environ. 219, 206–220 (2018).

    Article  Google Scholar 

  217. Zhu, Z. et al. Understanding an urbanizing planet: strategic directions for remote sensing. Remote Sens. Environ. 228, 164–182 (2019).

    Article  Google Scholar 

  218. Vilaysouk, X. et al. Estimating the total in-use stock of Laos using dynamic material flow analysis and nighttime light. Resour. Conserv. Recycl. 170, 105608 (2021).

    Article  Google Scholar 

  219. Henderson, J. V., Storeygard, A. & Weil, D. N. Measuring economic growth from outer space. Am. Econ. Rev. 102, 994–1028 (2012).

    Article  Google Scholar 

  220. Statista. Gross domestic product (GDP) at current prices of Wuhan City in China from 2012 to 2022. Statista https://www.statista.com/statistics/1374056/china-gross-domestic-product-gdp-of-wuhan/ (2023).

  221. Duan, H., Cao, Z., Shen, M., Liu, D. & **ao, Q. Detection of illicit sand mining and the associated environmental effects in China’s fourth largest freshwater lake using daytime and nighttime satellite images. Sci. Total Environ. 647, 606–618 (2019).

    Article  CAS  Google Scholar 

  222. Elvidge, C., Zhizhin, M., Baugh, K. & Hsu, F.-C. Automatic boat identification system for VIIRS low light imaging data. Remote Sens. 7, 3020–3036 (2015).

    Article  Google Scholar 

  223. Geliot, S., Coesfeld, J. & Kyba, C. C. M. Scale and impact of sports stadium grow lighting systems in England. Int. J. Sustain. Light. 24, 39–51 (2022).

    Article  Google Scholar 

  224. Daniel, J., Secor, W. & Campbell, B. Impact of information on attitudes regarding greenhouse lighting externality regulation. J. Agric. Appl. Econ. 55, 358–375 (2023).

    Article  Google Scholar 

  225. Li, X., Liu, S., Jendryke, M., Li, D. & Wu, C. Night-time light dynamics during the Iraqi civil war. Remote Sens. 10, 858 (2018).

    Article  Google Scholar 

  226. Miller, S. et al. Illuminating the capabilities of the Suomi National Polar-Orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band. Remote Sens. 5, 6717–6766 (2013).

    Article  Google Scholar 

  227. Miller, S. D. et al. Honing in on bioluminescent milky seas from space. Sci. Rep. 11, 15443 (2021).

    Article  CAS  Google Scholar 

  228. Zhou, L. et al. Observed atmospheric features for the 2022 Hunga Tonga volcanic eruption from Joint Polar Satellite System science data products. Atmosphere 14, 263 (2023).

    Article  Google Scholar 

  229. Ranzoni, J., Giuliani, G., Huber, L. & Ray, N. Modelling the nocturnal ecological continuum of the State of Geneva, Switzerland, based on high-resolution nighttime imagery. Remote Sens. Appl. Soc. Environ. 16, 100268 (2019).

    Google Scholar 

  230. Elvidge, C. D. et al. The Nightsat mission concept. Int. J. Remote Sens. 28, 2645–2670 (2007).

    Article  Google Scholar 

  231. Falchi, F., Barà, S., Cinzano, P., Lima, R. C. & Pawley, M. A call for scientists to halt the spoiling of the night sky with artificial light and satellites. Nat. Astron. 7, 237–239 (2023).

    Article  Google Scholar 

  232. Vruno, F. D. et al. Unintended electromagnetic radiation from Starlink satellites detected with LOFAR between 110 and 188 MHz. Astron. Astrophys. 676, A75 (2023).

    Article  Google Scholar 

  233. Cui, Z. & Xu, Y. Impact simulation of Starlink satellites on astronomical observation using Worldwide Telescope. Astron. Comput. 41, 100652 (2022).

    Article  Google Scholar 

  234. Kocifaj, M., Kundracik, F., Barentine, J. C. & Barà, S. The proliferation of space objects is a rapidly increasing source of artificial night sky brightness. Mon. Not. R. Astron. Soc. Lett. 504, L40–L44 (2021).

    Article  Google Scholar 

  235. Lewis, H. G. Understanding long-term orbital debris population dynamics. J. Space Saf. Eng. 7, 164–170 (2020).

    Article  Google Scholar 

  236. Lackner, H. Yemen in Crisis: Road to War (Verso Books, 2019).

  237. Rao, C. & Yan, B. Study on the interactive influence between economic growth and environmental pollution. Environ. Sci. Pollut. Res. 27, 39442–39465 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

A.A., A.S, C.C.M.K., F.H., H.L.A., M.A., M.K. and T.D. received funding for this work through ESA’s New Earth Observation Mission Ideas (NEOMI) program under contract 4000139244/22/NL. A.S.d.M. has been funded by European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement number 847635 (UNA4CAREER). A.J. was supported by the project BELLVUE “Beleuchtungsplanung: Verfahren und Methoden für eine naturschutzfreundliche Beleuchtungsgestaltung” by the BfN with funds from the BMU (FKZ: 3521 84 1000).

Author information

Authors and Affiliations

Authors

Contributions

H.L.A, A.A., T.D., F.H., A.J., M.K., A.S.d.M., K.W. and C.C.M.K. researched data for the article. H.L.A., A.A., M.A., T.D., B.R.E., G.G., F.H., M.K., A.S., K.W. and C.C.M.K contributed substantially to the discussion of the content. H.L.A., A.A., T.D., F.H., A.J., M.K., A.S.d.M., K.W. and C.C.M.K. wrote the article. H.L.A., A.A., A.S. and C.C.M.K. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Hector Linares Arroyo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Qingling Zhang, Avalon Owens and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Dark Sky International: https://www.darksky.org

ImageJ: http://imagej.nih.gov/ij/

IRIS: http://www.astrosurf.com/buil/us/iris/iris.htm

The World Factbook: https://www.cia.gov/the-world-factbook/field/airports/country-comparison/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linares Arroyo, H., Abascal, A., Degen, T. et al. Monitoring, trends and impacts of light pollution. Nat Rev Earth Environ 5, 417–430 (2024). https://doi.org/10.1038/s43017-024-00555-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-024-00555-9

  • Springer Nature Limited

Navigation