Log in

Polymeric membranes with highly homogenized nanopores for ultrafast water purification

  • Article
  • Published:

From Nature Sustainability

View current issue Submit your manuscript

Abstract

Membrane nanofiltration is widely used in various chemical separation and water purification processes. However, obtaining high water permeance and high solute removal selectivity for achieving energetically efficient precise separation in nanofiltration membranes remains challenging due to their inherent pore heterogeneity. Here we introduce a cinnamate-mediated polymerization method to fabricate nanofiltration membranes with highly homogenized and well-tailored nanopores to address this challenge. Our experimental data and molecular dynamics simulation results show that cinnamate-mediated polymerization can manipulate monomer diffusion and intermolecular void size to create a homogenized and tailored selective layer in a highly homogenized membrane. The obtained membrane exhibited a high water permeance of 104.3 l m−2 h−1 bar−1, which is substantially higher than that of the pristine membrane synthesized without cinnamate mediation, superior molecular sieving ability, excellent salt/dye separation factor and good operational stability, outperforming state-of-the-art membranes. Overall, this work enables the design and fabrication of nanofiltration membranes that combine other mutually exclusive properties for energetically efficient water purification applications towards a sustainable water–energy nexus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1: Schematic illustration of CMP.
Fig. 2: Microstructural properties of CNMs and HHMs.
Fig. 3: Molecular dynamics simulation results.
Fig. 4: Nanofiltration performance of CNMs and HHMs.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are included within the paper and its Supplementary Information. Source data are provided with this paper.

References

  1. Lai, H. W. H. et al. Hydrocarbon ladder polymers with ultrahigh permselectivity for membrane gas separations. Science 375, 1390–1392 (2022).

    Article  CAS  Google Scholar 

  2. Li, S. et al. Hydrophobic polyamide nanofilms provide rapid transport for crude oil separation. Science 377, 1555–1561 (2022).

    Article  CAS  Google Scholar 

  3. Datta, S. J. et al. Rational design of mixed-matrix metal–organic framework membranes for molecular separations. Science 376, 1080–1087 (2022).

    Article  CAS  Google Scholar 

  4. Van der Bruggen, B. Sustainable implementation of innovative technologies for water purification. Nat. Rev. Chem. 5, 217–218 (2021).

    Article  Google Scholar 

  5. Zhao, Y. et al. Pulsed hydraulic-pressure-responsive self-cleaning membrane. Nature 608, 69–73 (2022).

    Article  CAS  Google Scholar 

  6. Jiang, Z. et al. Aligned macrocycle pores in ultrathin films for accurate molecular sieving. Nature 609, 58–64 (2022).

    Article  CAS  Google Scholar 

  7. Shen, J. et al. Fast water transport and molecular sieving through ultrathin ordered conjugated-polymer-framework membranes. Nat. Mater. 21, 1183–1190 (2022).

    Article  CAS  Google Scholar 

  8. Feng, X., Peng, D., Zhu, J., Wang, Y. & Zhang, Y. Recent advances of loose nanofiltration membranes for dye/salt separation. Sep. Purif. Technol. 285, 120228 (2022).

    Article  CAS  Google Scholar 

  9. Huang, T. et al. Molecularly-porous ultrathin membranes for highly selective organic solvent nanofiltration. Nat. Commun. 11, 5882 (2020).

    Article  CAS  Google Scholar 

  10. Zhao, C. et al. Polyamide membranes with nanoscale ordered structures for fast permeation and highly selective ion-ion separation. Nat. Commun. 14, 1112 (2023).

    Article  CAS  Google Scholar 

  11. Zhang, W. H. et al. Graphene oxide membranes with stable porous structure for ultrafast water transport. Nat. Nanotechnol. 16, 337–343 (2021).

    Article  Google Scholar 

  12. Culp, T. E. et al. Nanoscale control of internal inhomogeneity enhances water transport in desalination membranes. Science 371, 72–75 (2021).

    Article  CAS  Google Scholar 

  13. Geise, G. M. Why polyamide reverse-osmosis membranes work so well. Science 371, 31–32 (2021).

    Article  CAS  Google Scholar 

  14. Du, Y. et al. Nanofiltration membranes with narrowed pore size distribution via pore wall modification. Chem. Commun. 52, 8589–8592 (2016).

    Article  CAS  Google Scholar 

  15. Liang, Y. et al. Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 Å precision separation. Nat. Commun. 11, 2015 (2020).

    Article  CAS  Google Scholar 

  16. Shen, L. et al. Polyamide-based membranes with structural homogeneity for ultrafast molecular sieving. Nat. Commun. 13, 500 (2022).

    Article  CAS  Google Scholar 

  17. Anderson, L., Sanders, E. W. & Unthank, M. G. Recyclable thermosets based on modified epoxy–amine network polymers. Mater. Horiz. 10, 889–898 (2023).

    Article  CAS  Google Scholar 

  18. Hafeez, S. et al. Desymmetrization via activated esters enables rapid synthesis of multifunctional benzene-1,3,5-tricarboxamides and creation of supramolecular hydrogelators. J. Am. Chem. Soc. 144, 4057–4070 (2022).

    Article  CAS  Google Scholar 

  19. Han, S. et al. Microporous organic nanotube assisted design of high performance nanofiltration membranes. Nat. Commun. 13, 7954 (2022).

    Article  CAS  Google Scholar 

  20. Yang, C. et al. Antifouling graphene oxide membranes for oil–water separation via hydrophobic chain engineering. Nat. Commun. 13, 7334 (2022).

    Article  Google Scholar 

  21. Han, Z. et al. A versatile hydrogel network-repairing strategy achieved by the covalent-like hydrogen bond interaction. Sci. Adv. 8, eabl5066 (2022).

    Article  CAS  Google Scholar 

  22. Wang, H. et al. Hydrogen-bond donor and acceptor cooperative catalysis strategy for cyclic dehydration of diols to access O-heterocycles. Sci. Adv. 7, eabg0396 (2021).

    Article  CAS  Google Scholar 

  23. Li, G. et al. Infrared spectroscopic study of hydrogen bonding topologies in the smallest ice cube. Nat. Commun. 11, 5449 (2020).

    Article  CAS  Google Scholar 

  24. Liu, Y. Y. et al. Photodegradation of carbon dots cause cytotoxicity. Nat. Commun. 12, 812 (2021).

    Article  CAS  Google Scholar 

  25. Zhao, L. et al. Switching the magnetic hysteresis of an [Feii–NC–Wv]-based coordination polymer by photoinduced reversible spin crossover. Nat. Chem. 13, 698–704 (2021).

    Article  CAS  Google Scholar 

  26. Zhang, Z., Gao, Y., Chen, S. & Wang, J. Palladium-catalyzed living/controlled vinyl addition polymerization of cyclopropenes. J. Am. Chem. Soc. 143, 17806–17815 (2021).

    Article  CAS  Google Scholar 

  27. Zhou, Z. et al. Conjugated microporous polymer membranes for light-gated ion transport. Sci. Adv. 8, eabo2929 (2022).

    Article  CAS  Google Scholar 

  28. Li, Y. et al. Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving. Nat. Commun. 11, 599 (2020).

    Article  Google Scholar 

  29. Kim, C. et al. Bottom-up synthesis of two-dimensional carbon with vertically aligned ordered micropores for ultrafast nanofiltration. Sci. Adv. 9, eade7871 (2023).

    Article  CAS  Google Scholar 

  30. Sun, J. et al. Real-time imaging of Na+ reversible intercalation in ‘Janus’ graphene stacks for battery applications. Sci. Adv. 7, eabf0812 (2021).

    Article  CAS  Google Scholar 

  31. Jeong, S. et al. Spatial distribution modulation of mixed building blocks in metal–organic frameworks. Nat. Commun. 13, 1027 (2022).

    Article  CAS  Google Scholar 

  32. Li, M. L. et al. Highly enantioselective carbene insertion into N–H bonds of aliphatic amines. Science 366, 990–994 (2019).

    Article  CAS  Google Scholar 

  33. Zhang, Y., Kim, D., Dong, R., Feng, X. & Osuji, C. O. Tunable organic solvent nanofiltration in self-assembled membranes at the sub-1 nm scale. Sci. Adv. 8, eabm5899 (2022).

    Article  CAS  Google Scholar 

  34. Zhang, W. et al. General synthesis of ultrafine metal oxide/reduced graphene oxide nanocomposites for ultrahigh-flux nanofiltration membrane. Nat. Commun. 13, 471 (2022).

    Article  CAS  Google Scholar 

  35. **ao, M. et al. Charge transport physics of a unique class of rigid-rod conjugated polymers with fused-ring conjugated units linked by double carbon–carbon bonds. Sci. Adv. 7, eabe5280 (2021).

    Article  CAS  Google Scholar 

  36. Wang, D. et al. Design of robust superhydrophobic surfaces. Nature 582, 55–59 (2020).

    Article  CAS  Google Scholar 

  37. Lin, W. C. et al. Impacts of non-uniform filament feed spacers characteristics on the hydraulic and anti-fouling performances in the spacer-filled membrane channels: experiment and numerical simulation. Water Res. 185, 116251 (2020).

    Article  CAS  Google Scholar 

  38. Wu, B. et al. Stable solar water splitting with wettable organic-layer-protected silicon photocathodes. Nat. Commun. 13, 4460 (2022).

    Article  CAS  Google Scholar 

  39. Pechincha, C. et al. Lysosomal enzyme trafficking factor LYSET enables nutritional usage of extracellular proteins. Science 378, eabn5637 (2022).

    Article  CAS  Google Scholar 

  40. Zhang, Y. et al. Molecularly soldered covalent organic frameworks for ultrafast precision sieving. Sci. Adv. 7, eabe8706 (2021).

    Article  CAS  Google Scholar 

  41. Huang, T., Puspasari, T., Nunes, S. P. & Peinemann, K. V. Ultrathin 2D-layered cyclodextrin membranes for high-performance organic solvent nanofiltration. Adv. Funct. Mater. 30, 1906797 (2020).

    Article  CAS  Google Scholar 

  42. Fan, H., Gu, J., Meng, H., Knebel, A. & Caro, J. High-flux membranes based on the covalent organic framework COF-LZU1 for selective dye separation by nanofiltration. Angew. Chem. Int. Ed. 57, 4083–4087 (2018).

    Article  CAS  Google Scholar 

  43. Yang, H. et al. Covalent organic framework membranes through a mixed-dimensional assembly for molecular separations. Nat. Commun. 10, 2101 (2019).

    Article  Google Scholar 

  44. Li, Q. et al. Tannic acid assisted interfacial polymerization based loose thin-film composite NF membrane for dye/salt separation. Desalination 479, 114343 (2020).

    Article  CAS  Google Scholar 

  45. Lin, J. et al. Fractionation of direct dyes and salts in aqueous solution using loose nanofiltration membranes. J. Membr. Sci. 477, 183–193 (2015).

    Article  CAS  Google Scholar 

  46. Karan, S., Jiang, Z. & Livingston, A. G. Sub–10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science 348, 1347–1351 (2015).

    Article  CAS  Google Scholar 

  47. He, X. et al. Controlling the selectivity of conjugated microporous polymer membrane for efficient organic solvent nanofiltration. Adv. Funct. Mater. 29, 1900134 (2019).

    Article  Google Scholar 

  48. Liang, B. et al. Microporous membranes comprising conjugated polymers with rigid backbones enable ultrafast organic-solvent nanofiltration. Nat. Chem. 10, 961–967 (2018).

    Article  CAS  Google Scholar 

  49. Nie, L. et al. Realizing small-flake graphene oxide membranes for ultrafast size-dependent organic solvent nanofiltration. Sci. Adv. 6, eaaz9184 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program (2023YFE0127000, L.S.), National Natural Science Foundation of China (22178076, L.S.) and Fundamental Research Funds from the Central Universities of Ministry of Education of China (2023FRFK03047, L.S.). S.L. acknowledges the financial support provided by the Australian Research Council (DP180103861 and IH170100009). The TEM testing was conducted by D. M. Li (School of Environment, Harbin Institute of Technology, Harbin, China).

Author information

Authors and Affiliations

Authors

Contributions

L.S., J.H., Y.Z., S.L. and H.W. designed the experiments. J.H. carried out the material synthesis, material characterization and performance measurements. J.H., Y.Z., J.G., L.S., S.L. and H.W. performed the data analysis. J.H. wrote the manuscript, and J.H., Y.Z., J.G., F.Y., J.M., Y.B., L.S., S.L. and H.W. discussed the results and revised the manuscript.

Corresponding authors

Correspondence to Yanqiu Zhang, Lu Shao, Shaomin Liu or Huanting Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Guandao Gao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–35, Tables 1–15 and Methods.

Reporting Summary

Source data

Source Data Fig. 2

Microstructural properties of membranes, source data.

Source Data Fig. 3

Molecular dynamics simulations results, source data.

Source Data Fig. 4

Nanofiltration performance of membranes, source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Zhang, Y., Guo, J. et al. Polymeric membranes with highly homogenized nanopores for ultrafast water purification. Nat Sustain (2024). https://doi.org/10.1038/s41893-024-01371-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41893-024-01371-1

  • Springer Nature Limited

Navigation