Log in

Structural basis of MALAT1 RNA maturation and mascRNA biogenesis

  • Article
  • Published:

From Nature Structural & Molecular Biology

View current issue Submit your manuscript

Abstract

The metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) long noncoding RNA (lncRNA) has key roles in regulating transcription, splicing, tumorigenesis, etc. Its maturation and stabilization require precise processing by RNase P, which simultaneously initiates the biogenesis of a 3′ cytoplasmic MALAT1-associated small cytoplasmic RNA (mascRNA). mascRNA was proposed to fold into a transfer RNA (tRNA)-like secondary structure but lacks eight conserved linking residues required by the canonical tRNA fold. Here we report crystal structures of human mascRNA before and after processing, which reveal an ultracompact, quasi-tRNA-like structure. Despite lacking all linker residues, mascRNA faithfully recreates the characteristic ‘elbow’ feature of tRNAs to recruit RNase P and ElaC homolog protein 2 (ELAC2) for processing, which exhibit distinct substrate specificities. Rotation and repositioning of the D-stem and anticodon regions preclude mascRNA from aminoacylation, avoiding interference with translation. Therefore, a class of metazoan lncRNA loci uses a previously unrecognized, unusually streamlined quasi-tRNA architecture to recruit select tRNA-processing enzymes while excluding others to drive bespoke RNA biogenesis, processing and maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1: Overall structures of human mascRNA before and after processing.
Fig. 2: Structural comparison of mascRNA with tRNAPhe.
Fig. 3: Comparison of mascRNA and tRNAPhe thermostabilities and mutational effects.
Fig. 4: Molecular basis of pre-mascRNA recruitment of human RNase P.
Fig. 5: Molecular basis of pre-mascRNA recruitment of human ELAC2.
Fig. 6: mascRNA escapes aminoacylation despite binding GlnRS.
Fig. 7: Comparison of diverse RNA topologies that drive tRNA mimicry.

Data availability

Atomic coordinates and structure factor amplitudes for the human premature and mature mascRNA were deposited to the PDB under accession codes 8V1H and 8V1I, respectively. The raw sequencing data were deposited to the Gene Expression Omnibus (GEO) under accession number GSE248290. Source data are provided with this paper.

References

  1. Ji, P. et al. MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22, 8031–8041 (2003).

    Article  PubMed  Google Scholar 

  2. Arun, G., Aggarwal, D. & Spector, D. L. MALAT1 long non-coding RNA: functional implications. Noncoding RNA 6, 22 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu, N. et al. N6-methyladenosine-dependent RNA structural switches regulate RNA–protein interactions. Nature 518, 560–564 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tripathi, V. et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol. Cell 39, 925–938 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang, B. et al. Identification and characterization of a class of MALAT1-like genomic loci. Cell Rep. 19, 1723–1738 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brown, J. A., Valenstein, M. L., Yario, T. A., Tycowski, K. T. & Steitz, J. A. Formation of triple-helical structures by the 3′-end sequences of MALAT1 and MENβ noncoding RNAs. Proc. Natl Acad. Sci. USA 109, 19202–19207 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wilusz, J. E., Freier, S. M. & Spector, D. L. 3′ end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell 135, 919–932 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brown, J. A. et al. Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix. Nat. Struct. Mol. Biol. 21, 633–640 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun, T. et al. The small RNA mascRNA differentially regulates TLR-induced proinflammatory and antiviral responses. JCI Insight 6, e150833 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lu, X. et al. The tRNA-like small noncoding RNA mascRNA promotes global protein translation. EMBO Rep. 21, e49684 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gast, M. et al. tRNA-like transcripts from the NEAT1–MALAT1 genomic region critically influence human innate immunity and macrophage functions. Cells 11, 3970 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. **e, S. J. et al. mascRNA and its parent lncRNA MALAT1 promote proliferation and metastasis of hepatocellular carcinoma cells by activating ERK/MAPK signaling pathway. Cell Death Discov. 7, 110 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dreher, T. W. Role of tRNA-like structures in controlling plant virus replication. Virus Res. 139, 217–229 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, J. & Ferré-D’Amaré, A. R. The tRNA elbow in structure, recognition and evolution. Life 6, 3 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Torabi, S. F., DeGregorio, S. J. & Steitz, J. A. tRNA-like leader–trailer interaction promotes 3′-end maturation of MALAT1. RNA 27, 1140–1147 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Grosjean, H. & Westhof, E. An integrated, structure- and energy-based view of the genetic code. Nucleic Acids Res. 44, 8020–8040 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Suddala, K. C. & Zhang, J. High-affinity recognition of specific tRNAs by an mRNA anticodon-binding groove. Nat. Struct. Mol. Biol. 26, 1114–1122 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, J. Recognition of the tRNA structure: everything everywhere but not all at once. Cell Chem. Biol. 31, 36–52 (2024).

    Article  CAS  PubMed  Google Scholar 

  19. Shepotinovskaya, I. & Uhlenbeck, O. C. tRNA residues evolved to promote translational accuracy. RNA 19, 510–516 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Auffinger, P., Louise-May, S. & Westhof, E. Molecular dynamics simulations of solvated yeast tRNAAsp. Biophys. J. 76, 50–64 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Oliva, R., Cavallo, L. & Tramontano, A. Accurate energies of hydrogen bonded nucleic acid base pairs and triplets in tRNA tertiary interactions. Nucleic Acids Res. 34, 865–879 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Leamy, K. A., Yamagami, R., Yennawar, N. H. & Bevilacqua, P. C. Single-nucleotide control of tRNA folding cooperativity under near-cellular conditions. Proc. Natl Acad. Sci. USA 116, 23075–23082 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Strulson, C. A., Boyer, J. A., Whitman, E. E. & Bevilacqua, P. C. Molecular crowders and cosolutes promote folding cooperativity of RNA under physiological ionic conditions. RNA 20, 331–347 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bou-Nader, C. et al. HIV-1 matrix–tRNA complex structure reveals basis for host control of Gag localization. Cell Host Microbe 29, 1421–1436 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, J. & Ferré-D’Amaré, A. R. Co-crystal structure of a T-box riboswitch stem I domain in complex with its cognate tRNA. Nature 500, 363–366 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Reiter, N. J. et al. Structure of a bacterial ribonuclease P holoenzyme in complex with tRNA. Nature 468, 784–789 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Korostelev, A., Trakhanov, S., Laurberg, M. & Noller, H. F. Crystal structure of a 70S ribosome–tRNA complex reveals functional interactions and rearrangements. Cell 126, 1065–1077 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Wu, J. et al. Cryo-EM structure of the human ribonuclease P holoenzyme. Cell 175, 1393–1404 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Lan, P. et al. Structural insight into precursor tRNA processing by yeast ribonuclease P. Science 362, eaat6678 (2018).

    Article  PubMed  Google Scholar 

  30. Wan, F. et al. Cryo-electron microscopy structure of an archaeal ribonuclease P holoenzyme. Nat. Commun. 10, 2617 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cook, A. G., Fukuhara, N., **ek, M. & Conti, E. Structures of the tRNA export factor in the nuclear and cytosolic states. Nature 461, 60–65 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Bhatta, A. & Hillen, H. S. Structural and mechanistic basis of RNA processing by protein-only ribonuclease P enzymes. Trends Biochem. Sci. 47, 965–977 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Derksen, M., Mertens, V. & Pruijn, G. J. RNase P-mediated sequence-specific cleavage of RNA by engineered external guide sequences. Biomolecules 5, 3029–3050 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yuan, Y. & Altman, S. Substrate recognition by human RNase P: identification of small, model substrates for the enzyme. EMBO J. 14, 159–168 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kahle, D., Wehmeyer, U. & Krupp, G. Substrate recognition by RNase P and by the catalytic M1 RNA: identification of possible contact points in pre-tRNAs. EMBO J. 9, 1929–1937 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pellegrini, O., Nezzar, J., Marchfelder, A., Putzer, H. & Condon, C. Endonucleolytic processing of CCA-less tRNA precursors by RNase Z in Bacillus subtilis. EMBO J. 22, 4534–4543 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mohan, A., Whyte, S., Wang, X., Nashimoto, M. & Levinger, L. The 3′ end CCA of mature tRNA is an antideterminant for eukaryotic 3′-tRNase. RNA 5, 245–256 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gerlach, P. et al. Structure and regulation of the nuclear exosome targeting complex guides RNA substrates to the exosome. Mol. Cell 82, 2505–2518 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Puno, M. R. & Lima, C. D. Structural basis for RNA surveillance by the human nuclear exosome targeting (NEXT) complex. Cell 185, 2132–2147 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Falk, S. et al. The molecular architecture of the TRAMP complex reveals the organization and interplay of its two catalytic activities. Mol. Cell 55, 856–867 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Finer-Moore, J., Czudnochowski, N., O’Connell, J. D. 3rd, Wang, A. L. & Stroud, R. M. Crystal structure of the human tRNA m1 A58 methyltransferase–tRNA3Lys complex: refolding of substrate tRNA allows access to the methylation target. J. Mol. Biol. 427, 3862–3876 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shibata, H. S., Takaku, H., Takagi, M. & Nashimoto, M. The T loop structure is dispensable for substrate recognition by tRNase ZL. J. Biol. Chem. 280, 22326–22334 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Levinger, L., Hopkinson, A., Desetty, R. & Wilson, C. Effect of changes in the flexible arm on tRNase Z processing kinetics. J. Biol. Chem. 284, 15685–15691 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li de la Sierra-Gallay, I., Mathy, N., Pellegrini, O. & Condon, C. Structure of the ubiquitous 3′ processing enzyme RNase Z bound to transfer RNA. Nat. Struct. Mol. Biol. 13, 376–377 (2006).

    Article  PubMed  Google Scholar 

  45. Tomita, K. et al. Structural basis for template-independent RNA polymerization. Nature 430, 700–704 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Ziehler, W. A., Day, J. J., Fierke, C. A. & Engelke, D. R. Effects of 5′ leader and 3′ trailer structures on pre-tRNA processing by nuclear RNase P. Biochemistry 39, 9909–9916 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Nashimoto, M., Wesemann, D. R., Geary, S., Tamura, M. & Kaspar, R. L. Long 5′ leaders inhibit removal of a 3′ trailer from a precursor tRNA by mammalian tRNA 3′ processing endoribonuclease. Nucleic Acids Res. 27, 2770–2776 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sherlock, M. E., Hartwick, E. W., MacFadden, A. & Kieft, J. S. Structural diversity and phylogenetic distribution of valyl tRNA-like structures in viruses. RNA 27, 27–39 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Giege, R. & Eriani, G. The tRNA identity landscape for aminoacylation and beyond. Nucleic Acids Res. 51, 1528–1570 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Giege, R., Sissler, M. & Florentz, C. Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res. 26, 5017–5035 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hayne, C. K. et al. Structural basis for pre-tRNA recognition and processing by the human tRNA splicing endonuclease complex. Nat. Struct. Mol. Biol. 30, 824–833 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sekulovski, S., Sušac, L., Stelzl, L. S., Tampé, R. & Trowitzsch, S. Structural basis of substrate recognition by human tRNA splicing endonuclease TSEN. Nat. Struct. Mol. Biol. 30, 834–840 (2023).

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, X. et al. Structural basis of pre-tRNA intron removal by human tRNA splicing endonuclease. Mol. Cell 83, 1328–1339 (2023).

    Article  CAS  PubMed  Google Scholar 

  54. Ognjenovic, J. et al. The crystal structure of human GlnRS provides basis for the development of neurological disorders. Nucleic Acids Res. 44, 3420–3431 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bonilla, S. L., Sherlock, M. E., MacFadden, A. & Kieft, J. S. A viral RNA hijacks host machinery using dynamic conformational changes of a tRNA-like structure. Science 374, 955–960 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Phizicky, E. M. & Hopper, A. K. tRNA biology charges to the front. Genes Dev. 24, 1832–1860 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Dong, J., Qiu, H., Garcia-Barrio, M., Anderson, J. & Hinnebusch, A. G. Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain. Mol. Cell 6, 269–279 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Brown, A., Fernandez, I. S., Gordiyenko, Y. & Ramakrishnan, V. Ribosome-dependent activation of stringent control. Nature 534, 277–280 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Loveland, A. B. et al. Ribosome•RelA structures reveal the mechanism of stringent response activation. eLife 5, e17029 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Battaglia, R. A., Grigg, J. C. & Ke, A. Structural basis for tRNA decoding and aminoacylation sensing by T-box riboregulators. Nat. Struct. Mol. Biol. 26, 1106–1113 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang, J. & Ferre-D’Amare, A. R. Direct evaluation of tRNA aminoacylation status by the T-box riboswitch using tRNA–mRNA stacking and steric readout. Mol. Cell 55, 148–155 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li, S. et al. Structural basis of amino acid surveillance by higher-order tRNA–mRNA interactions. Nat. Struct. Mol. Biol. 26, 1094–1105 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen, X. & Wolin, S. L. Transfer RNA halves are found as nicked tRNAs in cells: evidence that nicked tRNAs regulate expression of an RNA repair operon. RNA 29, 620–629 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hughes, K. J., Chen, X., Burroughs, A. M., Aravind, L. & Wolin, S. L. An RNA repair operon regulated by damaged tRNAs. Cell Rep. 33, 108527 (2020).

  65. Li, M. et al. Codon-usage-based inhibition of HIV protein synthesis by human Schlafen 11. Nature 491, 125–128 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wain-Hobson, S., Sonigo, P., Danos, O., Cole, S. & Alizon, M. Nucleotide sequence of the AIDS virus, LAV. Cell 40, 9–17 (1985).

    Article  CAS  PubMed  Google Scholar 

  67. Kutluay, S. B. et al. Global changes in the RNA binding specificity of HIV-1 gag regulate virion genesis. Cell 159, 1096–1109 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bour, T. et al. Apicomplexa-specific tRip facilitates import of exogenous tRNAs into malaria parasites. Proc. Natl Acad. Sci. USA 113, 4717–4722 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Weixlbaumer, A. et al. Insights into translational termination from the structure of RF2 bound to the ribosome. Science 322, 953–956 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Au, H. H. et al. Global shape mimicry of tRNA within a viral internal ribosome entry site mediates translational reading frame selection. Proc. Natl Acad. Sci. USA 112, E6446–E6455 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ren, Q. et al. Alternative reading frame selection mediated by a tRNA-like domain of an internal ribosome entry site. Proc. Natl Acad. Sci. USA 109, E630–E639 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Colussi, T. M. et al. The structural basis of transfer RNA mimicry and conformational plasticity by a viral RNA. Nature 511, 366–369 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gutmann, S. et al. Crystal structure of the transfer-RNA domain of transfer-messenger RNA in complex with SmpB. Nature 424, 699–703 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Guyomar, C., D’Urso, G., Chat, S., Giudice, E. & Gillet, R. Structures of tmRNA and SmpB as they transit through the ribosome. Nat. Commun. 12, 4909 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dunkle, J. A. et al. Structures of the bacterial ribosome in classical and hybrid states of tRNA binding. Science 332, 981–984 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cornish, P. V., Ermolenko, D. N., Noller, H. F. & Ha, T. Spontaneous intersubunit rotation in single ribosomes. Mol. Cell 30, 578–588 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Leontis, N. B. & Westhof, E. Geometric nomenclature and classification of RNA base pairs. RNA 7, 499–512 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Oikonomou, P., Goodarzi, H. & Tavazoie, S. Systematic identification of regulatory elements in conserved 3′ UTRs of human transcripts. Cell Rep. 7, 281–292 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yamaji, M. et al. DND1 maintains germline stem cells via recruitment of the CCR4–NOT complex to target mRNAs. Nature 543, 568–572 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Anastasakis, D. G. et al. A non-radioactive, improved PAR-CLIP and small RNA cDNA library preparation protocol. Nucleic Acids Res. 49, e45 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).

    Article  CAS  Google Scholar 

  83. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chou, F. C., Sripakdeevong, P., Dibrov, S. M., Hermann, T. & Das, R. Correcting pervasive errors in RNA crystallography through enumerative structure prediction. Nat. Methods 10, 74–76 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank I. Botos for computational support, G. Piszczek and D. Wu for support in biophysical analyses, Y. He and N. Tjandra for cell culture support, the NIAMS Genomics and Technology Section for sequencing support and C. Stathopoulos, K. Grafanaki, A. Umuhire Juru, K. Suddala and A. Brasington for discussions. This work was supported by the Intramural Research Program of the National Institutes of Health (NIH), the National Institute of Diabetes and Digestive and Kidney Diseases (ZIADK075136 to J.Z.), the National Institute for Arthritis and Musculoskeletal and Skin Disease, the National Cancer Institute and an NIH Deputy Director for Intramural Research Challenge Award to J.Z. and Y.-X.W. This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science user facility operated for the DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Contributions

I.S. and J.Z. conceptualized and designed the work. I.S. prepared all RNA and protein samples and crystals and performed all biochemical and biophysical assays. I.S. and C.B.-N. collected diffraction data and determined and refined the structures. I.S. and J.Z. analyzed the structures. D.G.A. and M.H. contributed to cell culture, enzyme preparations, RT–qPCR and RNA-seq analyses. L.F. and Y.-X.W. contributed to biophysical analyses. All authors contributed to data interpretation and paper preparation.

Corresponding author

Correspondence to **wei Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available. Primary Handling Editor: Sara Osman, in collaboration with the Nature Structural & Molecular Biology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Secondary structures of human pre-tRNAGln, pre-mascRNA and mascRNA and crystal structures of human mascRNA and pre-mascRNA.

a, b, Secondary structures of pre-tRNAGln (a) and pre-mascRNA (b). Both RNAs contain 30-nucleotides (nts) of natural 5′-leader and 3′-trailer sequences (red). RNase P and ELAC2 cleavage sites are indicated by blue arrowheads. c, Secondary structure of the crystallization construct corresponding to the post-cleavage mascRNA prior to 3′ CCA addition. d, Front, back, and side views of mascRNA structure as in c, colored as Fig. 1. e, Secondary structure of the crystallization construct that corresponds to the pre-mascRNA. The 9-base pair (bp) acceptor stem extension is shown in grey. To facilitate crystallization, the original 8-bp AU-rich extended acceptor stem was extended by 1-bp, its GC content increased, and the bulged A removed. f, Front, back, and side views of the pre-mascRNA structure as in e, colored as Fig. 1.

Extended Data Fig. 2 Representative X-ray crystallographic electron density maps and crystal-packing arrangements and interactions in the pre-mascRNA and mascRNA crystals.

a, b, Composite simulated anneal-omit 2|Fo|-|Fc| electron density calculated using the final model (1.0 s.d.) superimposed with the final refined model of the pre-mascRNA (a) and portion of the map showing the elbow region (b). c, d, Composite simulated anneal-omit 2|Fo|-|Fc| electron density calculated using the final model (1.0 s.d.) superimposed with the final refined model of mascRNA (c) and portions of the map showing the elbow region (d). e, Overall crystal-packing arrangements in the pre-mascRNA crystals. A reference molecule is shown in blue, while its symmetry-related molecules are in salmon. f, g, Detailed packing interfaces between pre-mascRNA molecules at the elbow (f) and termini (g) regions. h, Overall crystal-packing arrangements in the mascRNA crystals, colored as in e. i-k, Detailed packing interfaces between mascRNA molecules at the termini (i) and ASL (j, k) regions. Different interactions were observed between the chain A (j) and B (k).

Extended Data Fig. 3 Conservation of the secondary structures of mascRNA and menRNA and secondary structures of human pre-mascRNAs used in in-cell RNase P or ELAC2 processing assays.

a, Nucleotides with ~100%, 90%, and 75% sequence conservation are colored in red, black, and orange, respectively, based on Rfam1. R and Y represent purines (A or G) and pyrimidines (C or U), respectively. b, Secondary structures of pre-mascRNA including either a 5′-leader (left) or a 3′-trailer (right). The gray residues (5′-GG or 3′-UU) were appended during cloning into destination vectors. c, Representative IGV plots for WT and mutant pre-mascRNAs mapped to an artificial genome of the pre-mascRNA sequence (in b).

Extended Data Fig. 4 CD analyses of mascRNA variants.

a, Temperature-dependent CD spectra (upper) and unfolding transitions (lower) of mascRNA mutants in the presence of 10 mM Mg2+. The measured melting temperature (Tm) for each RNA is indicated. b, Temperature-dependent CD spectra (upper) and unfolding transitions (lower) of mascRNA ASL (anticodon stem loop) mutants in the absence of Mg2+. The measured melting temperature (Tm) for each RNA is indicated. Secondary structures are shown in Fig. 3a.

Source data

Extended Data Fig. 5 CD analyses of tRNAGln mascRNA variants in the absence of Mg2+.

Temperature-dependent CD spectra (upper) and unfolding transitions (lower) of tRNAGln and mascRNA mutants without Mg2+. The measured melting temperature (Tm) for each RNA is indicated. All RNAs are the mascRNA unless explicitly labelled as tRNAGln.

Source data

Extended Data Fig. 6 tRNA interfaces with processing and transport enzymes inform their mascRNA interactions.

a, Recognition of the tRNA elbow by the human RNase P (PDB: 6AHU, left)2 and its modelled interaction with pre-mascRNA elbow (right), based on tRNA-mascRNA structural alignment. b, Detailed stacking interfaces between the tRNA elbow and the interdigitated double T-loop motif (IDTM) of RNase Ps from bacteria (PDB: 3Q1Q)3, archaea (PDB: 6K0B)4, yeast (PDB: 6AH3)5 and metazoans (PDB: 6AHU)2. The elbow base pair is generally weakened or opened. c-e, Recognition of the tRNA elbow by RNase Z (c, PDB: 2FK6)6, CCA-adding enzyme (d, PDB: 1SZ1)7 and Exportin-t (e, PDB: 3ICQ)8 (left) and their modelled interactions with the mascRNA elbow (right).

Extended Data Fig. 7 Kinetic analyses of RNase P cleavage of WT and select mutant pre-mascRNAs.

a, Plots of remaining, uncleaved RNAs as functions of time for WT, G15C + C41A, G8U + C18U, U40G, ΔA44U45, ASLGGG, and ASLGAAA mascRNAs, whose gels are shown in Fig. 4d. b, Representative in vitro RNase P cleavage analyses of G8U, G11U, G14C, G14U, G15C, C18U, U39G, C41G, C41A and C41U mascRNAs. n = 3 for WT, G11U, G14C, C18U, U40G, U39G, C41G; n = 2 for G8U, G14U, G15C, G8U + C18U, C41A, C41U, G15C + C41A, ΔA44U45, ASLGGG and ASLGAAA. Biologically independent replicates are indicated as individual data points. All rates are shown in Fig. 4g.

Source data

Extended Data Fig. 8 Kinetic analyses of RNase P cleavage of additional mutant pre-mascRNAs.

Representative in vitro RNase P cleavage analyses of G15C + C41G, G14C + C41A, A42U, A43U, A43G, A44U, A44G, A44C, U45C, U45G, U45A, and Δ3′-UCCA pre-mascRNAs, and C41G and C41A pre-mascRNA minihelix variants. Secondary structures of the C41G and C41A mascRNA minihelices are shown at the bottom. The 30-nt 5′ leader that precedes the minihelices (Extended Data Fig. 1) is omitted for clarity. n = 3 for A42U, A43G, A44U, A44G, U45C, U45G, U45A; n = 2 for G15C + C41G, G14C + C41A, A43U, A44C, Δ3′-UCCA, and pre-mascRNA minihelices C41G and C41A. Biologically independent replicates indicated as individual data points. All rates are shown in Fig. 4g.

Source data

Extended Data Fig. 9 Kinetic analyses of human ELAC2 cleavage of WT and select mutant pre-mascRNAs and tRNAs.

Representative in vitro ELAC2 cleavage analyses of G18U + G19U tRNAGln, WT, G8U, G11U, G14C, G15C, G14C + G15C, C18U, G8U + C18U, U39G, U40G, C41G, A42U, A44G, and 3′-UCCA pre-mascRNAs, and pre-mascRNA minihelix. The 30-nt 3′ trailer (Extended Data Fig. 1) following the minihelix is omitted for clarity.). All rates are summarized in Fig. 5c (n = 2 biologically independent replicates, indicated as individual data points).

Source data

Extended Data Fig. 10 Secondary structures of tRNAGln and mascRNA variants used for fluorescence polarization titration analysis with GlnRS.

a, Secondary structures of tRNAGln and mascRNA variants. b,c, Fluorescence polarization titration analysis of the tRNAGln and mascRNA variants binding to GlnRSΔNTD (b) or the NTD alone (c). Data are presented as mean ± s.d. (n = 3 biologically independent replicates).

Source data

Supplementary information

Source data

Source Data Figs. 3–6 and Extended Data Figs. 4, 5 and 7–10

Statistical source data for all main figures and extended data figures, where applicable.

Source Data Figs. 4–6 and Extended Data Figs. 7–9

Unprocessed gels for all main figures and extended data figures, where applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skeparnias, I., Bou-Nader, C., Anastasakis, D.G. et al. Structural basis of MALAT1 RNA maturation and mascRNA biogenesis. Nat Struct Mol Biol (2024). https://doi.org/10.1038/s41594-024-01340-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41594-024-01340-4

  • Springer Nature America, Inc.

Navigation