Log in

Multiplex cerebrospinal fluid proteomics identifies biomarkers for diagnosis and prediction of Alzheimer’s disease

  • Article
  • Published:

From Nature Human Behaviour

View current issue Submit your manuscript
  • 1 Altmetric

Abstract

Recent expansion of proteomic coverage opens unparalleled avenues to unveil new biomarkers of Alzheimer’s disease (AD). Among 6,361 cerebrospinal fluid (CSF) proteins analysed from the ADNI database, YWHAG performed best in diagnosing both biologically (AUC = 0.969) and clinically (AUC = 0.857) defined AD. Four- (YWHAG, SMOC1, PIGR and TMOD2) and five- (ACHE, YWHAG, PCSK1, MMP10 and IRF1) protein panels greatly improved the accuracy to 0.987 and 0.975, respectively. Their superior performance was validated in an independent external cohort and in discriminating autopsy-confirmed AD versus non-AD, rivalling even canonical CSF ATN biomarkers. Moreover, they effectively predicted the clinical progression to AD dementia and were strongly associated with AD core biomarkers and cognitive decline. Synaptic, neurogenic and infectious pathways were enriched in distinct AD stages. Mendelian randomization did not support the significant genetic link between CSF proteins and AD. Our findings revealed promising high-performance biomarkers for AD diagnosis and prediction, with implications for clinical trials targeting different pathomechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1: Study overview.
Fig. 2: CSF proteomic differences across distinct disease stages.
Fig. 3: Protein importance ranking and performance for distinguishing biologically/clinically defined AD from controls.
Fig. 4: Autopsy neuropathological validation and independent external validation.
Fig. 5: Predictive performance of YWHAG, SMOC1 and TMOD2 and their associations with AD endophenotypes.
Fig. 6: Enrichment, Mendelian randomization and druggability profiling analysis.

Data availability

Data used in the preparation of this Article were obtained on 12 September 2023 from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (https://ida.loni.usc.edu/pages/access/studyData.jsp?project=ADNI) and the Parkinson’s Progression Markers Initiative (PPMI) database (www.ppmi-info.org/access-data-specimens/download-data) (RRID: SCR_006431). For up-to-date information on the study, visit http://adni.loni.usc.edu/ and www.ppmi-info.org. ADNI data are publicly available to bona fide researchers upon application at https://adni.loni.usc.edu/, and PPMI data are publicly available to bona fide researchers upon application at https://www.ppmi-info.org/. Enrichment analysis data can be obtained from the STRING website (https://cn.string-db.org/). Agora Druggability data can be obtained from https://www.synapse.org/. All data supporting the findings described in this paper are available within the paper, in the Supplementary Information and from the corresponding author upon request. Source data are provided with this paper.

Code availability

All software used in this study is publicly available. The code used in this study can be accessed via GitHub at https://github.com/jasonHKU0907/AD_CSF_ADNI ref. 75.

References

  1. Johnson, E. C. B. et al. Large-scale deep multi-layer analysis of Alzheimer’s disease brain reveals strong proteomic disease-related changes not observed at the RNA level. Nat. Neurosci. 25, 213–225 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. van der Kant, R., Goldstein, L. S. B. & Ossenkoppele, R. Amyloid-beta-independent regulators of tau pathology in Alzheimer disease. Nat. Rev. Neurosci. 21, 21–35 (2020).

    Article  PubMed  Google Scholar 

  3. Sung, Y. J. et al. Proteomics of brain, CSF, and plasma identifies molecular signatures for distinguishing sporadic and genetic Alzheimer’s disease. Sci. Transl. Med. 15, eabq5923 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Johnson, E. C. B. et al. Cerebrospinal fluid proteomics define the natural history of autosomal dominant Alzheimer’s disease. Nat. Med. 29, 1979–1988 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Del Campo, M. et al. CSF proteome profiling across the Alzheimer’s disease spectrum reflects the multifactorial nature of the disease and identifies specific biomarker panels. Nat. Aging 2, 1040–1053 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Haque, R. et al. A protein panel in cerebrospinal fluid for diagnostic and predictive assessment of Alzheimer’s disease. Sci. Transl. Med. 15, eadg4122 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Libiger, O. et al. Longitudinal CSF proteomics identifies NPTX2 as a prognostic biomarker of Alzheimer’s disease. Alzheimers Dement. 17, 1976–1987 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Wildsmith, K. R. et al. Identification of longitudinally dynamic biomarkers in Alzheimer’s disease cerebrospinal fluid by targeted proteomics. Mol. Neurodegener. 9, 22 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bader, J. M. et al. Proteome profiling in cerebrospinal fluid reveals novel biomarkers of Alzheimer’s disease. Mol. Syst. Biol. 16, e9356 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Whelan, C. D. et al. Multiplex proteomics identifies novel CSF and plasma biomarkers of early Alzheimer’s disease. Acta Neuropathol. Commun. 7, 169 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Modeste, E. S. et al. Quantitative proteomics of cerebrospinal fluid from African Americans and Caucasians reveals shared and divergent changes in Alzheimer’s disease. Mol. Neurodegener. 18, 48 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jack, C. R. Jr. et al. NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 14, 535–562 (2018).

    Article  PubMed  Google Scholar 

  13. Jiang, T. et al. TREM1 facilitates microglial phagocytosis of amyloid beta. Acta Neuropathol. 132, 667–683 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Replogle, J. M. et al. A TREM1 variant alters the accumulation of Alzheimer-related amyloid pathology. Ann. Neurol. 77, 469–477 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lomoio, S. et al. Gga3 deletion and a GGA3 rare variant associated with late onset Alzheimer’s disease trigger BACE1 accumulation in axonal swellings. Sci. Transl. Med. 12, eaba1871 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bai, B. et al. Deep multilayer brain proteomics identifies molecular networks in Alzheimer’s disease progression. Neuron 105, 975–991.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hong, H. et al. Cross-talking pathways of rapidly accelerated fibrosarcoma-1 (RAF-1) in Alzheimer’s disease. Mol. Neurobiol. 61, 2798–2807 (2024).

  18. Park, H., Lee, Y. B. & Chang, K. A. miR-200c suppression increases tau hyperphosphorylation by targeting 14-3-3γ in early stage of 5xFAD mouse model of Alzheimer’s disease. Int. J. Biol. Sci. 18, 2220–2234 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Higginbotham, L. et al. Integrated proteomics reveals brain-based cerebrospinal fluid biomarkers in asymptomatic and symptomatic Alzheimer’s disease. Sci. Adv. 6, eaaz9360 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou, M. et al. Targeted mass spectrometry to quantify brain-derived cerebrospinal fluid biomarkers in Alzheimer’s disease. Clin. Proteom. 17, 19 (2020).

    Article  Google Scholar 

  21. Roy, D. S. et al. Anterior thalamic dysfunction underlies cognitive deficits in a subset of neuropsychiatric disease models. Neuron 109, 2590–2603.e13 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Johnson, E. C. B. et al. Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat. Med. 26, 769–780 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Watson, C. M. et al. Quantitative mass spectrometry analysis of cerebrospinal fluid protein biomarkers in Alzheimer’s disease. Sci. Data 10, 261 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dammer, E. B. et al. Multi-platform proteomic analysis of Alzheimer’s disease cerebrospinal fluid and plasma reveals network biomarkers associated with proteostasis and the matrisome. Alzheimers Res. Ther. 14, 174 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. van der Ende, E. L. et al. CSF proteomics in autosomal dominant Alzheimer’s disease highlights parallels with sporadic disease. Brain 146, 4495–4507 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Scheltens, P. et al. Alzheimer’s disease. Lancet 397, 1577–1590 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Omotade, O. F. et al. Tropomodulin isoform-specific regulation of dendrite development and synapse formation. J. Neurosci. 38, 10271–10285 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Folon, L. et al. Contribution of heterozygous PCSK1 variants to obesity and implications for precision medicine: a case–control study. Lancet Diabetes Endocrinol. 11, 182–190 (2023).

    Article  CAS  PubMed  Google Scholar 

  29. Deng, Y. T. et al. Association of life course adiposity with risk of incident dementia: a prospective cohort study of 322,336 participants. Mol. Psychiatry 27, 3385–3395 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, J. R. et al. The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell 102, 827–837 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Rosain, J. et al. Human IRF1 governs macrophagic IFN-γ immunity to mycobacteria. Cell 186, 621–645.e33 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Iovino, F. et al. pIgR and PECAM-1 bind to pneumococcal adhesins RrgA and PspC mediating bacterial brain invasion. J. Exp. Med. 214, 1619–1630 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sudwarts, A. et al. BIN1 is a key regulator of proinflammatory and neurodegeneration-related activation in microglia. Mol. Neurodegener. 17, 33 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Morris, J. C. et al. Autosomal dominant and sporadic late onset Alzheimer’s disease share a common in vivo pathophysiology. Brain 145, 3594–3607 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Del Campo, M. et al. CSF proteome profiling reveals biomarkers to discriminate dementia with Lewy bodies from Alzheimer’s disease. Nat. Commun. 14, 5635 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Timsina, J. et al. Comparative analysis of Alzheimer’s disease cerebrospinal fluid biomarkers measurement by multiplex SOMAscan platform and immunoassay-based approach. J. Alzheimers Dis. 89, 193–207 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rutledge, J. et al. Comprehensive proteomics of CSF, plasma, and urine identify DDC and other biomarkers of early Parkinson’s disease. Acta Neuropathol. 147, 52 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dammer, E. B. et al. Proteomic analysis of Alzheimer's disease cerebrospinal fluid reveals alterations associated with APOE epsilon4 and atomoxetine treatment. Sci. Transl. Med. 16, eadn3504 (2024).

    Article  PubMed  Google Scholar 

  39. Eldjarn, G. H. et al. Large-scale plasma proteomics comparisons through genetics and disease associations. Nature 622, 348–358 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Barranco, N. et al. Dense core vesicle markers in CSF and cortical tissues of patients with Alzheimer’s disease. Transl. Neurodegener. 10, 37 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Garcia-Ayllon, M. S., Silveyra, M. X. & Saez-Valero, J. Association between acetylcholinesterase and beta-amyloid peptide in Alzheimer’s cerebrospinal fluid. Chem. Biol. Interact. 175, 209–215 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Montoliu-Gaya, L. et al. Mass spectrometric simultaneous quantification of tau species in plasma shows differential associations with amyloid and tau pathologies. Nat. Aging 3, 661–669 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Barthélemy, N. R. et al. CSF tau phosphorylation occupancies at T217 and T205 represent improved biomarkers of amyloid and tau pathology in Alzheimer’s disease. Nat. Aging 3, 391–401 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ossenkoppele, R. et al. Amyloid and tau PET-positive cognitively unimpaired individuals are at high risk for future cognitive decline. Nat. Med. 28, 2381–2387 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang, C. et al. Genomic atlas of the proteome from brain, CSF and plasma prioritizes proteins implicated in neurological disorders. Nat. Neurosci. 24, 1302–1312 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gold, L. et al. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS ONE 5, e15004 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Candia, J. et al. Assessment of variability in the SOMAscan assay. Sci. Rep. 7, 14248 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bittner, T. et al. Technical performance of a novel, fully automated electrochemiluminescence immunoassay for the quantitation of beta-amyloid (1-42) in human cerebrospinal fluid. Alzheimers Dement. 12, 517–526 (2016).

    Article  PubMed  Google Scholar 

  49. Irwin, D. J. et al. Evolution of Alzheimer’s disease cerebrospinal fluid biomarkers in early Parkinson’s disease. Ann. Neurol. 88, 574–587 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schindler, S. E. et al. Cerebrospinal fluid biomarkers measured by Elecsys assays compared to amyloid imaging. Alzheimers Dement. 14, 1460–1469 (2018).

    Article  PubMed  Google Scholar 

  51. Meyer, P. F., Pichet Binette, A., Gonneaud, J., Breitner, J. C. S. & Villeneuve, S. Characterization of Alzheimer disease biomarker discrepancies using cerebrospinal fluid phosphorylated tau and AV1451 positron emission tomography. JAMA Neurol. 77, 508–516 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Weinshel, S. et al. Appropriateness of applying cerebrospinal fluid biomarker cutoffs from Alzheimer’s disease to Parkinson’s disease. J. Parkinsons Dis. 12, 1155–1167 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Franklin, E. E. et al. Brain collection, standardized neuropathologic assessment, and comorbidity in Alzheimer’s Disease Neuroimaging Initiative 2 participants. Alzheimers Dement. 11, 815–822 (2015).

    Article  PubMed  Google Scholar 

  54. Jack, C. R. Jr. et al. Different definitions of neurodegeneration produce similar amyloid/neurodegeneration biomarker group findings. Brain 138, 3747–3759 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Palmqvist, S., Mattsson, N., Hansson, O. & Alzheimer’s Disease Neuroimaging Initiative. Cerebrospinal fluid analysis detects cerebral amyloid-beta accumulation earlier than positron emission tomography. Brain 139, 1226–1236 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968–980 (2006).

    Article  PubMed  Google Scholar 

  57. Gibbons, L. E. et al. A composite score for executive functioning, validated in Alzheimer’s Disease Neuroimaging Initiative (ADNI) participants with baseline mild cognitive impairment. Brain Imaging Behav. 6, 517–527 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Crane, P. K. et al. Development and assessment of a composite score for memory in the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Brain Imaging Behav. 6, 502–516 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Donohue, M. C. et al. The preclinical Alzheimer cognitive composite: measuring amyloid-related decline. JAMA Neurol. 71, 961–970 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wang, Y. et al. Phosphorylated α-synuclein in Parkinson’s disease. Sci. Transl. Med. 4, 121ra120 (2012).

    Article  Google Scholar 

  61. Guolin, K. et al. LightGBM: a highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 30, 3149–3157 (2017).

    Google Scholar 

  62. DeLong, E. R., DeLong, D. M. & Clarke-Pearson, D. L. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44, 837–845 (1988).

    Article  CAS  PubMed  Google Scholar 

  63. Delaneau, O., Zagury, J. F. & Marchini, J. Improved whole-chromosome phasing for disease and population genetic studies. Nat. Methods 10, 5–6 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zheng, J. et al. Phenome-wide Mendelian randomization map** the influence of the plasma proteome on complex diseases. Nat. Genet. 52, 1122–1131 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pietzner, M. et al. Map** the proteo-genomic convergence of human diseases. Science 374, eabj1541 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ferkingstad, E. et al. Large-scale integration of the plasma proteome with genetics and disease. Nat. Genet. 53, 1712–1721 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Hansson, O. et al. The genetic regulation of protein expression in cerebrospinal fluid. EMBO Mol. Med. 15, e16359 (2023).

    Article  CAS  PubMed  Google Scholar 

  69. Kunkle, B. W. et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 51, 414–430 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Burgess, S., Davies, N. M. & Thompson, S. G. Bias due to participant overlap in two-sample Mendelian randomization. Genet. Epidemiol. 40, 597–608 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Burgess, S., Butterworth, A. & Thompson, S. G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol. 37, 658–665 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Bowden, J. et al. Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the I2 statistic. Int. J. Epidemiol. 45, 1961–1974 (2016).

    PubMed  PubMed Central  Google Scholar 

  73. Burgess, S. & Thompson, S. G. Avoiding bias from weak instruments in Mendelian randomization studies. Int. J. Epidemiol. 40, 755–764 (2011).

    Article  PubMed  Google Scholar 

  74. Burgess, S. Sample size and power calculations in Mendelian randomization with a single instrumental variable and a binary outcome. Int. J. Epidemiol. 43, 922–929 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  75. You, J. et al. jasonHKU0907 / AD_CSF_ADNI. GitHub https://github.com/jasonHKU0907/AD_CSF_ADNI (2024).

Download references

Acknowledgements

We thank all participants who donated their brains to the ADNI Neuropathology Core Center and PPMI database. We also thank all investigators who collected and processed specimens and performed neuropathological assessments in ADNI and PPMI. As such, the investigators within the ADNI or PPMI contributed to the design and implementation of the database and/or provided data but did not participate in the analysis or in the writing of this paper. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf. We also thank all contributors to the ADNI and PPMI databases. Data collection and sharing for this project was funded by the ADNI (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai, Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC; Johnson & Johnson Pharmaceutical Research & Development LLC; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer, Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research provides funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. PPMI, a public–private partnership, is funded by the Michael J. Fox Foundation for Parkinson’s Research and funding partners, including 4D Pharma, Abbvie, AcureX, Allergan, Amathus Therapeutics, Aligning Science Across Parkinson’s, AskBio, Avid Radiopharmaceuticals, BIAL, BioArctic, Biogen, Biohaven, BioLegend, BlueRock Therapeutics, Bristol Myers Squibb, Calico Labs, Capsida Biotherapeutics, Celgene, Cerevel Therapeutics, Coave Therapeutics, DaCapo Brainscience, Denali, Edmond J. Safra Foundation, Eli Lilly, Gain Therapeutics, GE HealthCare, Genentech, GSK, Golub Capital, Handl Therapeutics, Insitro, Jazz Pharmaceuticals, Johnson & Johnson Innovative Medicine, Lundbeck, Merck, Meso Scale Discovery, Mission Therapeutics, Neurocrine Biosciences, Neuron23, Neuropore, Pfizer, Piramal, Prevail Therapeutics, Roche, Sanofi, Servier, Sun Pharma Advanced Research Company, Takeda, Teva, UCB, Vanqua Bio, Verily, Voyager Therapeutics, the Weston Family Foundation and Yumanity Therapeutics. We also thank all the participants and researchers from Agora (10.57718/agora-adknowledgeportal), a platform initially developed by the NIA-funded Accelerating Medicines Partnership in AD consortium that shares evidence in support of AD target discovery. J.T.-Y. was funded by grants from the Science and Technology Innovation 2030 Major Projects (2022ZD0211600), the National Natural Science Foundation of China (92249305), the Shanghai Municipal Science and Technology Major Project (2023SHZDZX02) and the Shanghai Municipal Health Commission Emerging Interdisciplinary Research Project (2022JC01). W.C. was funded by the National Natural Science Foundation of China (82071997) and the Shanghai Rising-Star Program (21QA1408700). J.F.-F. was funded by the National Key R&D Program of China (2018YFC1312904, 2019YFA0709502), the Shanghai Municipal Science and Technology Major Project (2018SHZDZX01) and the 111 Project (No. B18015). Y.G. was funded by the National Postdoctoral Program for Innovative Talents (BX20240073). J.Y. was funded by the Shanghai Pujiang Talent Program (23PJD006). S.D.-C. was funded by the National Postdoctoral Program for Innovative Talents (BX20230087). Further, we thank the ZHANGJIANG LAB, Tianqiao and Chrissy Chen Institute, and the State Key Laboratory of Neurobiology and Frontiers Center for Brain Science of the Ministry of Education, Fudan University for support. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J.-T.Y. conceptualized and designed the study, interpreted the data and revised the manuscript. Y.G., S.-D.C., J.Y., S.-Y.H. and Y.-L.C. collected, analysed and interpreted the data, and drafted and revised the manuscript. All authors participated in the revision of the manuscript, had full access to all the study data and accept responsibility for submission of the paper for publication.

Corresponding author

Correspondence to **-Tai Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Gajanan Sathe, Christopher Whelan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–21.

Source Data for Supplementary Figures

Source Data for Supplementary Figs. 1–4.

Source data

Source Data Fig. 1

Data to plot Fig. 1.

Source Data Fig. 2

Data to plot Fig. 2.

Source Data Fig. 3

Data to plot Fig. 3.

Source Data Fig. 4

Data to plot Fig. 4.

Source Data Fig. 5

Data to plot Fig. 5.

Source Data Fig. 6

Data to plot Fig. 6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Chen, SD., You, J. et al. Multiplex cerebrospinal fluid proteomics identifies biomarkers for diagnosis and prediction of Alzheimer’s disease. Nat Hum Behav (2024). https://doi.org/10.1038/s41562-024-01924-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41562-024-01924-6

  • Springer Nature Limited

Navigation