Facts

  • NAD+ deficiency is the primary inducement to heart aging, resulting in decreased energy synthesis. The heart manifests as thinning of the ventricular wall and enlargement of the cardiac chamber diameter, which leads to heart failure with the continuation of the process.

  • As an anti-aging target, NAD+ also plays an important regulatory role in the heart. NAD+ mediated deacetylation is widely involved in regulating transcriptional signals for cardiomyocytes protection and interacts with ROS and calcium signals.

  • NAD+ mediated mitochondrial quality control is the core mechanism of preventing heart aging, involving mitochondrial dynamics, permeability, biological synthesis, and mitophagy. As a coenzyme, NAD+ also further stabilizes mitochondrial oxidative phosphorylation.

Open questions

  • Considering the characteristics of the heart as a blood-pum** organ, do more intracellular factors need to be considered when targeting NAD+ signals?

  • Do comorbidities of the aging heart affect the protective effect of NAD+ ?

  • Do different forms of NAD+ precursor intervention affect the protective effect of NAD+ ?

Introduction

Aging is a gradual, continuous, naturally occurring process. It is closely related to the development of several common chronic diseases, such as type II diabetes, hypertension, neurodegenerative diseases, etc. [1, 2], which are manifested by the decline and failure of multiple organ functions [1]. Among them, heart failure caused by heart aging at the cellular level is a high-risk factor affecting the life span of an individual [3]. Cardiovascular drugs commonly used in the treatment cannot inhibit the development of the disease effectively; instead, they only play a partial role in reducing the symptoms. It is necessary to find novel approaches for preventing heart aging by targeting the endogenous signaling pathways in cardiomyocytes. However, the investigation of regulatory mechanisms in the heart is still insufficient. Many in vivo and in vitro studies showed the importance of NAD+-dependent Sirtuins (SIRTs) deacetylation activity in the anti-aging process [4, 5]. However, discussing a single mechanism may neglect other targets of auxiliary intervention since the function of NAD+ itself is also an important part of the mitochondrial respiratory chain, wherein it interacts with most of the intracellular molecules. Recently, it has been believed that the depletion of NAD+ with aging is associated with oxidative stress injury, which is a crucial factor of aging, and NAD+ deficiency has a certain degree of duality for myocardial protection. Whether NAD+ signaling is the key variable affecting other cellular signaling pathways needs to be further investigated. A recent FDA-approved anti-aging supplement, nicotinamide mononucleotide (NMN), regulates NAD+ signaling to achieve cell self-regulation and improves adaptation to the environment of the aging cell from the perspectives of regulating aging-related gene transcription and inhibiting aging-induced stress imbalance [6]. However, whether a large amount of NAD+ supplementations would definitely induce heart anti-aging effect is also controversial. Therefore, this article focuses on the mechanism of NAD+ signaling in cardiomyocytes and various intracellular senescence processes, trying to understand its impact on several cell endogenous processes such as inflammation, apoptosis, autophagy, mitochondrial damage, etc. We aim to identify more feasible research directions of NAD+, resolve the existing unknown areas, and provide novel strategies and inspiration for our related research.

Aging heart and associated mechanisms

Implications of NAD+ in pathophysiological processes driving heart aging

The aging heart is accompanied by decreased energy synthesis and functional levels, such as low ejection fraction, shortening fraction, and increased left ventricular diameter, causing dilated cardiomyopathy and insufficient blood supply, which are the main manifestations of heart failure [1, 7]. Myocardial aging is also a high-risk factor for malignant arrhythmia and atrial fibrillation [8]. DNA damage, inflammatory reaction, and abnormal lipid metabolism could be well-recognized pathological characteristics of the aging myocardium [9]. Notably, a lack of NAD+ in the cardiomyocytes may cause hypoxia, which is considered as one of the leading factors for aging [10]. At the organelle level, genetic evidence showed that the change in mitochondrial permeability caused by myocardial aging is the main reason for the increase in cardiac mechanical stress sensitivity. Inhibition in the rise in mitochondrial permeability may help to reduce the decline in cardiac function caused by heart failure [

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ruiz-Meana M, Bou-Teen D, Ferdinandy P, Gyongyosi M, Pesce M, Perrino C, et al. Cardiomyocyte ageing and cardioprotection: consensus document from the ESC working groups cell biology of the heart and myocardial function. Cardiovasc Res. 2020;116:1835–49.

    Article  CAS  PubMed  Google Scholar 

  2. Partridge L, Fuentealba M, Kennedy BK. The quest to slow ageing through drug discovery. Nat Rev Drug Discov. 2020;19:513–32.

  3. Eisenberg T, Abdellatif M, Schroeder S, Primessnig U, Stekovic S, Pendl T, et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat Med. 2016;22:1428–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Annesley SJ, Fisher PR. Mitochondria in health and disease. Cells. 2019;8:680.

  5. Grabowska W, Sikora E, Bielak-Zmijewska A. Sirtuins, a promising target in slowing down the ageing process. Biogerontology. 2017;18:447–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Das A, Huang GX, Bonkowski MS, Longchamp A, Li C, Schultz MB, et al. Impairment of an endothelial NAD(+)-H(2)S signaling network is a reversible cause of vascular aging. Cell. 2018;173:74–89. e20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sarikhani M, Maity S, Mishra S, Jain A, Tamta AK, Ravi V, et al. SIRT2 deacetylase represses NFAT transcription factor to maintain cardiac homeostasis. J Biol Chem. 2018;293:5281–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Feng D, Xu D, Murakoshi N, Tajiri K, Qin R, Yonebayashi S, et al. Nicotinamide phosphoribosyltransferase (Nampt)/nicotinamide adenine dinucleotide (NAD) axis suppresses atrial fibrillation by modulating the calcium handling pathway. Int J Mol Sci. 2020;13:4655.

  9. Aman Y, Frank J, Lautrup SH, Matysek A, Niu Z, Yang G, et al. The NAD(+)-mitophagy axis in healthy longevity and in artificial intelligence-based clinical applications. Mech Ageing Dev. 2020;185:111194.

    Article  CAS  PubMed  Google Scholar 

  10. Lee CF, Caudal A, Abell L, Nagana Gowda GA, Tian R. Targeting NAD(+) metabolism as interventions for mitochondrial disease. Sci Rep. 2019;9:3073.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Hafner AV, Dai J, Gomes AP, **ao CY, Palmeira CM, Rosenzweig A, et al. Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging. 2010;2:914–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sabbah HN. Targeting mitochondrial dysfunction in the treatment of heart failure. Expert Rev Cardiovasc Ther. 2019;14:1305–13.

  13. Schneider J, Han WH, Matthew R, Sauvé Y, Lemieux H. Age and sex as confounding factors in the relationship between cardiac mitochondrial function and type 2 diabetes in the Nile Grass rat. PLoS ONE. 2020;15:e0228710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barcena de Arellano ML, Pozdniakova S, Kühl AA, Baczko I, Ladilov Y, Regitz-Zagrosek V. Sex differences in the aging human heart: decreased sirtuins, pro-inflammatory shift and reduced anti-oxidative defense. Aging. 2019;11:1918–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Migaud M, Kraus WL, Chen D, Ziegler M, Guarente LP, Bohr VA, et al. NAD metabolism and signaling. Cambridge, MA, USA: Cell Press; 2019.

  16. Del Favero G, Bonifacio A, Rowland TJ, Gao S, Song K, Sergo V, et al. Danon disease-associated LAMP-2 deficiency drives metabolic signature indicative of mitochondrial aging and fibrosis in cardiac tissue and hiPSC-derived cardiomyocytes. J Clin Med. 2020;9:2457.

  17. Zhang X, Williams ED, Azhar G, Rogers SC, Wei JY. Does p49/STRAP, a SRF-binding protein (SRFBP1), modulate cardiac mitochondrial function in aging? Exp Gerontol. 2016;82:150–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yeo D, Kang C, Ji LL. Aging alters acetylation status in skeletal and cardiac muscles. GeroScience. 2020;42:963–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tarragó MG, Chini CCS, Kanamori KS, Warner GM, Caride A, de Oliveira GC, et al. A potent and specific CD38 inhibitor ameliorates age-related metabolic dysfunction by reversing tissue NAD(+) decline. Cell Metab. 2018;27:1081–95. e1010.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Wang LF, Cao Q, Wen K, **ao YF, Chen TT, Guan XH, et al. CD38 deficiency alleviates D-galactose-induced myocardial cell senescence through NAD(+)/Sirt1 signaling pathway. Front Physiol 2019;10:1125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ruan Y, Dong C, Patel J, Duan C, Wang X, Wu X, et al. SIRT1 suppresses doxorubicin-induced cardiotoxicity by regulating the oxidative stress and p38MAPK pathways. Cell Physiol Biochem. 2015;35:1116–24.

    Article  CAS  PubMed  Google Scholar 

  22. Roos CM, Hagler M, Zhang B, Oehler EA, Arghami A, Miller JD. Transcriptional and phenotypic changes in aorta and aortic valve with aging and MnSOD deficiency in mice. Am J Physiol Heart Circ Physiol. 2013;305:H1428–1439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Volt H, García JA, Doerrier C, Díaz-Casado ME, Guerra-Librero A, López LC, et al. Same molecule but different expression: aging and sepsis trigger NLRP3 inflammasome activation, a target of melatonin. J Pineal Res. 2016;60:193–205.

    Article  CAS  PubMed  Google Scholar 

  24. Chen L, Yang G. PPARs integrate the mammalian clock and energy metabolism. PPAR Res. 2014;2014:653017.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Antonopoulos AS, Margaritis M, Verheule S, Recalde A, Sanna F, Herdman L, et al. Mutual regulation of epicardial adipose tissue and myocardial redox state by PPAR-γ/adiponectin signalling. Circ Res. 2016;118:842–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Anderson R, Richardson GD, Passos JF. Mechanisms driving the ageing heart. Exp Gerontol. 2018;109:5–15.

    Article  PubMed  Google Scholar 

  27. Luengo A, Li Z, Gui DY, Sullivan LB, Zagorulya M, Do BT, et al. Increased demand for NAD(+) relative to ATP drives aerobic glycolysis. Mol Cell. 2021;81:691–707. e696

    Article  CAS  PubMed  Google Scholar 

  28. Hershberger KA, Martin AS, Hirschey MD. Role of NAD(+) and mitochondrial sirtuins in cardiac and renal diseases. Nat Rev Nephrol. 2017;13:213–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hara N, Osago H, Hiyoshi M, Kobayashi-Miura M, Tsuchiya M. Quantitative analysis of the effects of nicotinamide phosphoribosyltransferase induction on the rates of NAD+ synthesis and breakdown in mammalian cells using stable isotope-labeling combined with mass spectrometry. PLoS ONE. 2019;14:e0214000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fletcher RS, Lavery GG. The emergence of the nicotinamide riboside kinases in the regulation of NAD+ metabolism. J Mol Endocrinol. 2018;61:R107–r121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu HW, Smith CB, Schmidt MS, Cambronne XA, Cohen MS, Migaud ME, et al. Pharmacological bypass of NAD(+) salvage pathway protects neurons from chemotherapy-induced degeneration. Proc Natl Acad Sci USA. 2018;115:10654–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang LQ, Van Haandel L, **ong M, Huang P, Heruth DP, Bi C, et al. Metabolic and molecular insights into an essential role of nicotinamide phosphoribosyltransferase. Cell Death Dis. 2017;8:e2705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fang EF, Hou Y, Lautrup S, Jensen MB, Yang B, SenGupta T, et al. NAD(+) augmentation restores mitophagy and limits accelerated aging in Werner syndrome. Nat Commun. 2019;10:5284.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Yarbro JR, Emmons RS, Pence BD. Macrophage immunometabolism and inflammaging: roles of mitochondrial dysfunction, cellular senescence, CD38, and NAD. Immunometabolism. 2020;2:e200026.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Deloux R, Tannous C, Ferry A, Li Z, Mericskay M. Aged nicotinamide riboside kinase 2 deficient mice present an altered response to endurance exercise training. Front Physiol. 2018;9:1290.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang R, Shen Y, Zhou L, Sangwung P, Fujioka H, Zhang L, et al. Short-term administration of Nicotinamide Mononucleotide preserves cardiac mitochondrial homeostasis and prevents heart failure. J Mol Cell Cardiol 2017;112:64–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhai X, Han W, Wang M, Guan S, Qu X. Exogenous supplemental NAD+ protect myocardium against myocardial ischemic/reperfusion injury in swine model. Am J Transl Res. 2019;11:6066–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Shum LC, White NS, Nadtochiy SM, Bentley KL, Brookes PS, Jonason JH, et al. Cyclophilin D knock-out mice show enhanced resistance to osteoporosis and to metabolic changes observed in aging bone. PLoS ONE. 2016;11:e0155709.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Baily CN, Cason RW, Vadvalkar SS, Matsuzaki S, Humphries KM. Inhibition of mitochondrial respiration by phosphoenolpyruvate. Arch Biochem Biophys. 2011;514:68–74.

    Article  PubMed  CAS  Google Scholar 

  40. Vinciguerra M, Santini MP, Martinez C, Pazienza V, Claycomb WC, Giuliani A, et al. mIGF-1/JNK1/SirT1 signaling confers protection against oxidative stress in the heart. Aging Cell. 2012;11:139–49.

    Article  CAS  PubMed  Google Scholar 

  41. Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox Biol. 2015;6:524–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Diguet N, Trammell SAJ, Tannous C, Deloux R, Piquereau J, Mougenot N, et al. Nicotinamide riboside preserves cardiac function in a mouse model of dilated cardiomyopathy. Circulation. 2018;137:2256–73.

    Article  CAS  PubMed  Google Scholar 

  43. Braidy N, Guillemin GJ, Mansour H, Chan-Ling T, Poljak A, Grant R. Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats. PLoS ONE. 2011;6:e19194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Um JH, Pendergast JS, Springer DA, Foretz M, Viollet B, Brown A, et al. AMPK regulates circadian rhythms in a tissue- and isoform-specific manner. PLoS ONE. 2011;6:e18450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang L, Quan N, Sun W, Chen X, Cates C, Rousselle T, et al. Cardiomyocyte-specific deletion of Sirt1 gene sensitizes myocardium to ischaemia and reperfusion injury. Cardiovasc Res. 2018;114:805–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hsu YJ, Hsu SC, Hsu CP, Chen YH, Chang YL, Sadoshima J, et al. Sirtuin 1 protects the aging heart from contractile dysfunction mediated through the inhibition of endoplasmic reticulum stress-mediated apoptosis in cardiac-specific Sirtuin 1 knockout mouse model. Int J Cardiol. 2017;228:543–52.

    Article  PubMed  Google Scholar 

  47. Kang H, Oka S, Lee DY, Park J, Aponte AM, Jung YS, et al. Sirt1 carboxyl-domain is an ATP-repressible domain that is transferrable to other proteins. Nat Commun. 2017;8:15560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Santos-Barriopedro I, Bosch-Presegué L, Marazuela-Duque A, de la Torre C, Colomer C, Vazquez BN, et al. SIRT6-dependent cysteine monoubiquitination in the PRE-SET domain of Suv39h1 regulates the NF-κB pathway. Nat Commun. 2018;9:101.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Zhang X, Azhar G, Wei JY. SIRT2 gene has a classic SRE element, is a downstream target of serum response factor and is likely activated during serum stimulation. PLoS ONE. 2017;12:e0190011.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Ianni A, Yuan X, Bober E, Braun T. Sirtuins in the cardiovascular system: potential targets in pediatric cardiology. Pediatr Cardiol. 2018;39:983–92.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fang J, Ianni A, Smolka C, Vakhrusheva O, Nolte H, Krüger M, et al. Sirt7 promotes adipogenesis in the mouse by inhibiting autocatalytic activation of Sirt1. Proc Natl Acad Sci USA. 2017;114:E8352–e8361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Porter GA, Urciuoli WR, Brookes PS, Nadtochiy SM. SIRT3 deficiency exacerbates ischemia-reperfusion injury: implication for aged hearts. Am J Physiol Heart Circ Physiol. 2014;306:H1602–1609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Huang CH, Tsai MS, Chiang CY, Su YJ, Wang TD, Chang WT, et al. Activation of mitochondrial STAT-3 and reduced mitochondria damage during hypothermia treatment for post-cardiac arrest myocardial dysfunction. Basic Res Cardiol. 2015;110:59.

    Article  PubMed  CAS  Google Scholar 

  54. Meier JA, Larner AC. Toward a new STATe: the role of STATs in mitochondrial function. Semin Immunol. 2014;26:20–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Knight RA, Scarabelli TM, Stephanou A. STAT transcription in the ischemic heart. JAKSTAT. 2012;1:111–7.

    PubMed  PubMed Central  Google Scholar 

  56. Liu D, Richardson G, Benli FM, Park C, de Souza JV, Bronowska AK, et al. Inflammageing in the cardiovascular system: mechanisms, emerging targets, and novel therapeutic strategies. Clin Sci. 2020;134:2243–62.

    Article  CAS  Google Scholar 

  57. Marín-Aguilar F, Lechuga-Vieco AV, Alcocer-Gómez E, Castejón-Vega B, Lucas J, Garrido C, et al. NLRP3 inflammasome suppression improves longevity and prevents cardiac aging in male mice. Aging Cell. 2020;19:e13050.

    Article  PubMed  CAS  Google Scholar 

  58. Palikaras K, Lionaki E, Tavernarakis N. Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature. 2015;521:525–8.

    Article  CAS  PubMed  Google Scholar 

  59. Bazopoulou D, Knoefler D, Zheng Y, Ulrich K, Oleson BJ, **e L, et al. Developmental ROS individualizes organismal stress resistance and lifespan. Nature. 2019;576:301–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Whitson JA, Bitto A, Zhang H, Sweetwyne MT, Coig R, Bhayana S, et al. SS-31 and NMN: two paths to improve metabolism and function in aged hearts. Aging Cell. 2020;19:e13213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kao CL, Chen LK, Chang YL, Yung MC, Hsu CC, Chen YC, et al. Resveratrol protects human endothelium from H(2)O(2)-induced oxidative stress and senescence via SirT1 activation. J Atherosclerosis Thrombosis. 2010;17:970–9.

    Article  CAS  Google Scholar 

  62. Arsiwala T, Pahla J, van Tits LJ, Bisceglie L, Gaul DS, Costantino S, et al. Sirt6 deletion in bone marrow-derived cells increases atherosclerosis - Central role of macrophage scavenger receptor 1. J Mol Cell Cardiol. 2020;139:24–32.

    Article  CAS  PubMed  Google Scholar 

  63. Balasubramanian P, Asirvatham-Jeyaraj N, Monteiro R, Sivasubramanian MK, Hall D, Subramanian M. Obesity-induced sympathoexcitation is associated with Nrf2 dysfunction in the rostral ventrolateral medulla. Am J Physiol Regul Integr Comp Physiol. 2020;318:R435–r444.

    Article  CAS  PubMed  Google Scholar 

  64. Ungvari Z, Bailey-Downs L, Sosnowska D, Gautam T, Koncz P, Losonczy G, et al. Vascular oxidative stress in aging: a homeostatic failure due to dysregulation of NRF2-mediated antioxidant response. Am J Physiol Heart Circ Physiol. 2011;301:H363–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ungvari Z, Bagi Z, Feher A, Recchia FA, Sonntag WE, Pearson K, et al. Resveratrol confers endothelial protection via activation of the antioxidant transcription factor Nrf2. Am J Physiol Heart Circ Physiol. 2010;299:H18–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lynch MR, Tran MT, Ralto KM, Zsengeller ZK, Raman V, Bhasin, SS, et al. TFEB-driven lysosomal biogenesis is pivotal for PGC1α-dependent renal stress resistance. JCI insight. 2019;5:e126749.

  67. Fernandez-Sanz C, Ruiz-Meana M, Miro-Casas E, Nuñez E, Castellano J, Loureiro M, et al. Defective sarcoplasmic reticulum-mitochondria calcium exchange in aged mouse myocardium. Cell Death Dis. 2014;5:e1573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang YS, Liu B, Luo XJ, Li TB, Zhang JJ, Peng JJ, et al. Nuclear cardiac myosin light chain 2 modulates NADPH oxidase 2 expression in myocardium: a novel function beyond muscle contraction. Basic Res Cardiol. 2015;110:38.

    Article  PubMed  CAS  Google Scholar 

  69. Zhu J, Rebecchi MJ, Tan M, Glass PS, Brink PR, Liu L. Age-associated differences in activation of Akt/GSK-3beta signaling pathways and inhibition of mitochondrial permeability transition pore opening in the rat heart. J Gerontol A Biol Sci Med Sci. 2010;65:611–9.

    Article  PubMed  CAS  Google Scholar 

  70. Feger BJ, Starnes JW. Myocardial Na+/H+ exchanger-1 (NHE1) content is decreased by exercise training. J Physiol Biochem. 2013;69:305–12.

    Article  CAS  PubMed  Google Scholar 

  71. Boslett J, Helal M, Chini E, Zweier JL. Genetic deletion of CD38 confers post-ischemic myocardial protection through preserved pyridine nucleotides. J Mol Cell Cardiol. 2018;118:81–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yamamura S, Izumiya Y, Araki S, Nakamura T, Kimura Y, Hanatani S, et al. Cardiomyocyte Sirt (Sirtuin) 7 ameliorates stress-induced cardiac hypertrophy by interacting with and deacetylating GATA4. Hypertension. 2020;75:98–108.

    Article  CAS  PubMed  Google Scholar 

  73. Prola A, Pires Da Silva J, Guilbert A, Lecru L, Piquereau J, Ribeiro M, et al. SIRT1 protects the heart from ER stress-induced cell death through eIF2α deacetylation. Cell Death Differ. 2017;24:343–56.

    Article  CAS  PubMed  Google Scholar 

  74. Korski KI, Kubli DA, Wang BJ, Khalafalla FG, Monsanto MM, Firouzi F, et al. Hypoxia prevents mitochondrial dysfunction and senescence in human c-Kit(+) cardiac progenitor cells. Stem Cells. 2019;37:555–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ren J, Yang L, Zhu L, Xu X, Ceylan AF, Guo W, et al. Akt2 ablation prolongs life span and improves myocardial contractile function with adaptive cardiac remodeling: role of Sirt1-mediated autophagy regulation. Aging Cell. 2017;16:976–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hosseini L, Vafaee MS, Badalzadeh R. Melatonin and nicotinamide mononucleotide attenuate myocardial ischemia/reperfusion injury via modulation of mitochondrial function and hemodynamic parameters in aged rats. J Cardiovasc Pharmacol Ther 2020;25:240–50.

    Article  CAS  PubMed  Google Scholar 

  77. Gao B, Yu W, Lv P, Liang X, Sun S, Zhang Y. Parkin overexpression alleviates cardiac aging through facilitating K63-polyubiquitination of TBK1 to facilitate mitophagy. Biochim Biophys Acta Mol Basis Dis. 2020;1867:165997.

    Article  PubMed  CAS  Google Scholar 

  78. Suliman HB, Keenan JE, Piantadosi CA. Mitochondrial quality-control dysregulation in conditional HO-1(-/-) mice. JCI Insight. 2017;2:e89676.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Huang C, Andres AM, Ratliff EP, Hernandez G, Lee P, Gottlieb RA. Preconditioning involves selective mitophagy mediated by Parkin and p62/SQSTM1. PLoS ONE. 2011;6:e20975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gong G, Song M, Csordas G, Kelly DP, Matkovich SJ, Dorn GW 2nd. Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice. Science. 2015;350:aad2459.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  81. Das S, Mitrovsky G, Vasanthi HR, Das DK. Antiaging properties of a grape-derived antioxidant are regulated by mitochondrial balance of fusion and fission leading to mitophagy triggered by a signaling network of Sirt1-Sirt3-Foxo3-PINK1-PARKIN. Oxid Med Cell Longev. 2014;2014:345105.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  82. Li J, Qi M, Li C, Shi D, Zhang D, **e D, et al. Tom70 serves as a molecular switch to determine pathological cardiac hypertrophy. Cell Res. 2014;24:977–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mizukami H, Saitoh S, Machii H, Yamada S, Hoshino Y, Misaka T, et al. Senescence marker protein-30 (SMP30) deficiency impairs myocardium-induced dilation of coronary arterioles associated with reactive oxygen species. Int J Mol Sci. 2013;14:9408–23.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  84. Lee Y, Lee HY, Hanna RA, Gustafsson AB. Mitochondrial autophagy by Bnip3 involves Drp1-mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes. Am J Physiol Heart Circ Physiol. 2011;301:H1924–1931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Moyzis AG, Sadoshima J, Gustafsson AB. Mending a broken heart: the role of mitophagy in cardioprotection. Am J Physiol Heart Circ Physiol. 2015;308:H183–192.

    Article  CAS  PubMed  Google Scholar 

  86. Abeyrathna P, Su Y. The critical role of Akt in cardiovascular function. Vasc Pharmacol. 2015;74:38–48.

    Article  CAS  Google Scholar 

  87. Zhang WY, Zhang QL, Xu MJ. Effects of propofol on myocardial ischemia reperfusion injury through inhibiting the JAK/STAT pathway. Eur Rev Med Pharmacol Sci. 2019;23:6339–45.

    PubMed  Google Scholar 

  88. Rikka S, Quinsay MN, Thomas RL, Kubli DA, Zhang X, Murphy AN, et al. Bnip3 impairs mitochondrial bioenergetics and stimulates mitochondrial turnover. Cell Death Differ. 2011;18:721–31.

    Article  CAS  PubMed  Google Scholar 

  89. Yuan Y, Pan SS. Parkin mediates mitophagy to participate in cardioprotection induced by late exercise preconditioning but Bnip3 does not. J Cardiovasc Pharmacol. 2018;71:303–16.

    Article  CAS  PubMed  Google Scholar 

  90. Frank DO, Dengjel J, Wilfling F, Kozjak-Pavlovic V, Hacker G, Weber A. The pro-apoptotic BH3-only protein Bim interacts with components of the translocase of the outer mitochondrial membrane (TOM). PLoS ONE. 2015;10:e0123341.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  91. Matsumoto C, Jiang Y, Emathinger J, Quijada P, Nguyen N, De La Torre A, et al. Short telomeres induce p53 and autophagy and modulate age-associated changes in cardiac progenitor cell fate. Stem Cells. 2018;36:868–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell. 2006;126:107–20.

    Article  CAS  PubMed  Google Scholar 

  93. Hoshino A, Matoba S, Iwai-Kanai E, Nakamura H, Kimata M, Nakaoka M, et al. p53-TIGAR axis attenuates mitophagy to exacerbate cardiac damage after ischemia. J Mol Cell Cardiol. 2012;52:175–84.

    Article  CAS  PubMed  Google Scholar 

  94. Dodson M, Darley-Usmar V, Zhang J. Cellular metabolic and autophagic pathways: traffic control by redox signaling. Free Radic Biol Med 2013;63:207–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Okawa Y, Hoshino A, Ariyoshi M, Kaimoto S, Tateishi S, Ono K, et al. Ablation of cardiac TIGAR preserves myocardial energetics and cardiac function in the pressure overload heart failure model. Am J Physiol Heart Circ Physiol. 2019;316:H1366–h1377.

    Article  CAS  PubMed  Google Scholar 

  96. Bensaad K, Cheung EC, Vousden KH. Modulation of intracellular ROS levels by TIGAR controls autophagy. EMBO J. 2009;28:3015–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yamanaka R, Hoshino A, Fukai K, Urata R, Minami Y, Honda S, et al. TIGAR reduces smooth muscle cell autophagy to prevent pulmonary hypertension. Am J Physiol Heart Circ Physiol. 2020;319:H1087–h1096.

    Article  CAS  PubMed  Google Scholar 

  98. Benigni A, Cassis P, Conti S, Perico L, Corna D, Cerullo D, et al. Sirt3 deficiency shortens life span and impairs cardiac mitochondrial function rescued by Opa1 gene transfer. Antioxid Redox Signal. 2019;31:1255–71.

    Article  CAS  PubMed  Google Scholar 

  99. Pecher SJ, Potthast AB, von Versen-Höynck F, Das AM. Impact of short-term hypoxia on sirtuins as regulatory elements in HUVECs. J Clin Med. 2020;9:2604.

  100. Gay A, Towler DA. Wnt signaling in cardiovascular disease: opportunities and challenges. Curr Opin Lipidol. 2017;28:387–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Morita H, Komuro I. Heart failure as an aging-related phenotype. Int Heart J. 2018;59:6–13.

    Article  CAS  PubMed  Google Scholar 

  102. Azim N, Ahmad J, Iqbal N, Siddiqa A, Majid A, Ashraf J, et al. Petri Net modelling approach for analysing the behaviour of Wnt/[inline-formula removed]-catenin and Wnt/Ca(2+) signalling pathways in arrhythmogenic right ventricular cardiomyopathy. IET Syst Biol. 2020;14:350–67.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Uchida R, Saito Y, Nogami K, Kajiyama Y, Suzuki Y, Kawase Y, et al. Erratum: Publisher Correction: Epigenetic silencing of Lgr5 induces senescence of intestinal epithelial organoids during the process of aging. NPJ Aging Mech Dis. 2019;5:5.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Breton M, Costemale-Lacoste JF, Li Z, Lafuente-Lafuente C, Belmin J, Mericskay M. Blood NAD levels are reduced in very old patients hospitalized for heart failure. Exp Gerontol. 2020;139:111051.

    Article  PubMed  CAS  Google Scholar 

  105. Kimura S, Zhang GX, Nishiyama A, Shokoji T, Yao L, Fan YY, et al. Role of NAD(P)H oxidase- and mitochondria-derived reactive oxygen species in cardioprotection of ischemic reperfusion injury by angiotensin II. Hypertension. 2005;45:860–6.

    Article  CAS  PubMed  Google Scholar 

  106. Saotome M, Katoh H, Yaguchi Y, Tanaka T, Urushida T, Satoh H, et al. Transient opening of mitochondrial permeability transition pore by reactive oxygen species protects myocardium from ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2009;296:H1125–1132.

    Article  CAS  PubMed  Google Scholar 

  107. Li H, Zhou C, Chen D, Fang N, Yao Y, Li L. Failure to protect against myocardial ischemia-reperfusion injury with sevoflurane postconditioning in old rats in vivo. Acta Anaesthesiol Scand. 2013;57:1024–31.

    Article  CAS  PubMed  Google Scholar 

  108. Kalous KS, Wynia-Smith SL, Summers SB, Smith BC. Human sirtuins are differentially sensitive to inhibition by nitrosating agents and other cysteine oxidants. J Biol Chem. 2020;295:8524–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ungvari Z, Bailey-Downs L, Gautam T, Jimenez R, Losonczy G, Zhang C, et al. Adaptive induction of NF-E2-related factor-2-driven antioxidant genes in endothelial cells in response to hyperglycemia. Am J Physiol Heart Circ Physiol. 2011;300:H1133–1140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tung BT, Rodriguez-Bies E, Thanh HN, Le-Thi-Thu H, Navas P, Sanchez VM, et al. Organ and tissue-dependent effect of resveratrol and exercise on antioxidant defenses of old mice. Aging Clin Exp Res. 2015;27:775–83.

    Article  PubMed  Google Scholar 

  111. Liu B, Ma R, Zhang J, Sun P, Yi R, Zhao X. Preventive effect of small-leaved kuding tea (Ligustrum robustum (Roxb.) Bl.) polyphenols on D-galactose-induced oxidative stress and aging in mice. Evid Based Complement Altern Med. 2019;2019:3152324.

    Article  Google Scholar 

  112. Enot DP, Niso-Santano M, Durand S, Chery A, Pietrocola F, Vacchelli E, et al. Metabolomic analyses reveal that anti-aging metabolites are depleted by palmitate but increased by oleate in vivo. Cell Cycle. 2015;14:2399–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Matasic DS, Brenner C, London B. Emerging potential benefits of modulating NAD(+) metabolism in cardiovascular disease. Am J Physiol Heart Circ Physiol. 2018;314:H839–h852.

    Article  CAS  PubMed  Google Scholar 

  114. Zhu J, Rebecchi MJ, Glass PS, Brink PR, Liu L. Cardioprotection of the aged rat heart by GSK-3beta inhibitor is attenuated: age-related changes in mitochondrial permeability transition pore modulation. Am J Physiol Heart Circ Physiol. 2011;300:H922–930.

    Article  CAS  PubMed  Google Scholar 

  115. Katare PB, Nizami HL, Paramesha B, Dinda AK, Banerjee SK. Activation of toll like receptor 4 (TLR4) promotes cardiomyocyte apoptosis through SIRT2 dependent p53 deacetylation. Sci Rep. 2020;10:19232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wen DT, Zheng L, Li JX, Cheng D, Liu Y, Lu K, et al. Endurance exercise resistance to lipotoxic cardiomyopathy is associated with cardiac NAD(+)/dSIR2/PGC-1alpha pathway activation in old Drosophila. Biol Open. 2019;8.

  117. Wen DT, Zheng L, Ni L, Wang H, Feng Y, Zhang M. The expression of CG9940 affects the adaptation of cardiac function, mobility, and lifespan to exercise in aging Drosophila. Exp Gerontol. 2016;83:6–14.

    Article  CAS  PubMed  Google Scholar 

  118. Guan XH, Hong X, Zhao N, Liu XH, **ao YF, Chen TT, et al. CD38 promotes angiotensin II-induced cardiac hypertrophy. J Cell Mol Med. 2017;21:1492–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Tarantini S, Yabluchanskiy A, Csipo T, Fulop G, Kiss T, Balasubramanian P, et al. Treatment with the poly(ADP-ribose) polymerase inhibitor PJ-34 improves cerebromicrovascular endothelial function, neurovascular coupling responses and cognitive performance in aged mice, supporting the NAD+ depletion hypothesis of neurovascular aging. GeroScience. 2019;41:533–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Oyarzún AP, Westermeier F, Pennanen C, López-Crisosto C, Parra V, Sotomayor-Flores C, et al. FK866 compromises mitochondrial metabolism and adaptive stress responses in cultured cardiomyocytes. Biochem Pharmacol. 2015;98:92–101.

    Article  PubMed  CAS  Google Scholar 

  121. Lin WK, Bolton EL, Cortopassi WA, Wang Y, O’Brien F, Maciejewska M, et al. Synthesis of the Ca(2+)-mobilizing messengers NAADP and cADPR by intracellular CD38 enzyme in the mouse heart: Role in beta-adrenoceptor signaling. J Biol Chem. 2017;292:13243–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Mills KF, Yoshida S, Stein LR, Grozio A, Kubota S, Sasaki Y, et al. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab. 2016;24:795–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Jia P, Liu C, Wu N, Jia D, Sun Y. Agomelatine protects against myocardial ischemia reperfusion injury by inhibiting mitochondrial permeability transition pore opening. Am J Transl Res. 2018;10:1310–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Charles S, Raj V, Ramasamy M, Ilango K, Arockiaraj J, Murugesan S, et al. Pharmacological inhibition of guanosine triphosphate cyclohydrolase1 elevates tyrosine phosphorylation of caveolin1 and cellular senescence. Eur J Pharmacol. 2019;848:1–10.

    Article  CAS  PubMed  Google Scholar 

  125. Tian L, Cao W, Yue R, Yuan Y, Guo X, Qin D, et al. Pretreatment with Tilianin improves mitochondrial energy metabolism and oxidative stress in rats with myocardial ischemia/reperfusion injury via AMPK/SIRT1/PGC-1 alpha signaling pathway. J Pharmacol Sci. 2019;139:352–60.

    Article  CAS  PubMed  Google Scholar 

  126. Zhang L, Yao J, Wang X, Li H, Liu T, Zhao W. Poly (ADP-ribose) synthetase inhibitor has a heart protective effect in a rat model of experimental sepsis. Int J Clin Exp Pathol. 2015;8:9824–35.

    PubMed  PubMed Central  Google Scholar 

  127. Seif AA. Nigella sativa attenuates myocardial ischemic reperfusion injury in rats. J Physiol Biochem. 2013;69:937–44.

    Article  PubMed  Google Scholar 

  128. Airhart SE, Shireman LM, Risler LJ, Anderson GD, Nagana Gowda GA, Raftery D, et al. An open-label, non-randomized study of the pharmacokinetics of the nutritional supplement nicotinamide riboside (NR) and its effects on blood NAD+ levels in healthy volunteers. PLoS ONE. 2017;12:e0186459.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank TopEdit (www.topeditsci.com) for the English language editing of this manuscript. This work is supported by author Yuan’s projects. National Natural Science Foundation of China (No. 3200830), China Postdoctoral Special Foundation (No. 2021T140356), and China Postdoctoral General Foundation (No. 2020M682120).

Author information

Authors and Affiliations

Authors

Contributions

YY, BL, XLL and DMX conceived this work. YY, BL, XLL, WJL, and BHH wrote the manuscript. WJL, BHH, SBY worked on summarizing data for the table. YY and YZG worked on optimizing visualized information delivery. WJL, SBY, and JSM analyzed data of the biological information. JSM, MJL, TY, CZW, and XKH assisted to investigate and collect references. XKH and DMX had critically read the manuscript.

Corresponding author

Correspondence to Dong-Ming **ng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., Liang, B., Liu, XL. et al. Targeting NAD+: is it a common strategy to delay heart aging?. Cell Death Discov. 8, 230 (2022). https://doi.org/10.1038/s41420-022-01031-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41420-022-01031-3

  • Springer Nature Limited