Log in

Opossum Hb chain sequence and neutral mutation theory

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE divergence of amino acid sequences which has accompanied evolution of species may be largely due to random fixation of selectively neutral or nearly neutral mutations. This was proposed by Kimura upon consideration of an inferred rapid rate of molecular evolution, the theory of the cost of natural selection, and observed high levels of polymorphism in natural populations1. Among the observations considered to favour the neutral mutation–random fixation theory1–4, the apparent uniformity of the rate of fixation of amino acid substitutions in homologous proteins along several phyletic lines is outstanding. Kimura proposed this test of the neutral mutation theory by examining the amino acid sequences of proteins from so-called ‘living fossils’4. If, for a very long slowly evolving line, a rate of molecular evolution equal to that of more rapidly evolving lines is inferred (and it is assumed that the rate of evolution of physiological adaptations generally parallels the morphological evolutionary rate) then a case is made for the fixation of neutral mutations. The amino acid sequence proposed here5 (Fig. 1) for the α chain of haemoglobin from a ‘living fossil’6, Didelphis marsupialis, the Virginia opossum may be taken for such a test of the neutral mutation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kimura, M., Nature, 217, 624–626 (1968).

    Article  ADS  CAS  Google Scholar 

  2. King, J. L., and Jukes, T. H., Science, 164, 788–798 (1969).

    Article  ADS  CAS  Google Scholar 

  3. Arnheim, N., and Taylor, C. E., Nature, 223, 900–903 (1969).

    Article  ADS  CAS  Google Scholar 

  4. Kimura, M., Proc. natn. Acad. Sci. U.S.A., 63, 1181–1188 (1969).

    Article  ADS  CAS  Google Scholar 

  5. Stenzel, P., thesis (Univ. Oregon Medical School, 1974).

  6. Simpson, G. G., The Meaning of Evolution (Yale University Press, 1949).

    Google Scholar 

  7. Waterman, M. R., and Stenzel, P., Biochim. biophys. Acta (in the press).

  8. Clegg, J. B., Naughton, M. A., and Weatherall, D. J., Nature, 207, 945–947 (1965).

    Article  ADS  CAS  Google Scholar 

  9. Gross, E., in Methods in Enzymology (edit. by Hirs, C. H. W.), 11, 238–254 (Academic Press, New York, 1967).

    Google Scholar 

  10. Dixon, H. B. F., and Perham, R. N., Biochem. J., 109, 312–314 (1968).

    Article  CAS  Google Scholar 

  11. Raftery, M. A., and Cole, R. D., Biochem. Biophys. Res. Commun., 10, 467–472 (1962).

    Article  Google Scholar 

  12. Jones, R. T., in Methods of Biochemical Analysis (edit. by Glick, D.), 18, 205–258 (Interscience, New York, 1970).

    Google Scholar 

  13. Konigsberg, W., in Methods in Enzymology (edit. by Hirs, C. H. W.), 11, 461–469 (Academic Press, New York, 1967).

    Google Scholar 

  14. Light, A., in Methods in Enzymology (edit. by Hirs, C. H. W.), 25, 253–261 (Academic Press, New York, 1972).

    Google Scholar 

  15. Brimhall, B., Duerst, M., Hollan, S. R., Stenzel, P., Szelenyi, J., and Jones, R. T., Biochim. biophys. Acta, 336, 344–360 (1974).

    Article  CAS  Google Scholar 

  16. Schroeder, W. A., Shelton, J. R., Shelton, J. B., Robberson, B., and Babin, D. R., Arch. Biochem. Biophys., 120, 1–14 (1967).

    Article  CAS  Google Scholar 

  17. Matsuda, G., Gehring-Muller, R., and Braunitzer, G., Biochem. Zeit., 338, 669–673 (1963).

    CAS  Google Scholar 

  18. Jones, R. T., Brimhall, B., and Duerst, M., Fedn Proc., 30, 1259 (1971).

    Google Scholar 

  19. Braunitzer, G., Flamm, U., Best, J. S., and Schrank, B., Z. Physiol. Chemie, 349, 1073–1075 (1968).

    CAS  Google Scholar 

  20. Braunitzer, G., et al., Z. Physiol. Chemie, 325, 283–286 (1961).

    Article  CAS  Google Scholar 

  21. Beard, J. M., and Thompson, E. O. P., Aust. J. biol. Sci., 24, 765–786 (1971).

    Article  CAS  Google Scholar 

  22. Whittaker, R. G., Fisher, W. K., and Thompson, E. O. P., Aust. J. biol. Sci., 26, 877–888 (1973).

    Article  CAS  Google Scholar 

  23. Matsuda, G., Takei, H., Wu, K. C., and Shiozawa, T., Intern. J. Prot. Res., 3, 173–174 (1971).

    Article  CAS  Google Scholar 

  24. Hilse, K., and Braunitzer, G., Z. Physiol. Chemie, 349, 433–450 (1968).

    Article  CAS  Google Scholar 

  25. Haldane, J. B. S., J. Genet., 55, 511–524 (1957).

    Article  Google Scholar 

  26. Maynard-Smith, J., Nature, 219, 1114–1116 (1968).

    Article  Google Scholar 

  27. Crow, J. F., in Biomathematics (edit. by Kojima, K.), 1, 128–177 (Springer-Verlag, Heidelberg, 1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

STENZEL, P. Opossum Hb chain sequence and neutral mutation theory. Nature 252, 62–63 (1974). https://doi.org/10.1038/252062a0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1038/252062a0

  • Springer Nature Limited

This article is cited by

Navigation