Log in

Molecular Evolution in Historical Perspective

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

In the 1960s, advances in protein chemistry and molecular genetics provided new means for the study of biological evolution. Amino acid sequencing, nucleic acid hybridization, zone gel electrophoresis, and immunochemistry were some of the experimental techniques that brought about new perspectives to the study of the patterns and mechanisms of evolution. New concepts, such as the molecular evolutionary clock, and the discovery of unexpected molecular phenomena, like the presence of repetitive sequences in eukaryotic genomes, eventually led to the realization that evolution might occur at a different pace at the organismic and the molecular levels, and according to different mechanisms. These developments sparked important debates between defendants of the molecular and organismic approaches. The most vocal confrontations focused on the relation between primates and humans, and the neutral theory of molecular evolution. By the 1980s and 1990s, the construction of large protein and DNA sequences databases, and the development of computer-based statistical tools, facilitated the coming together of molecular and evolutionary biology. Although in its contemporary form the field of molecular evolution can be traced back to the last five decades, the field has deep roots in twentieth century experimental life sciences. For historians of science, the origins and consolidation of molecular evolution provide a privileged field for the study of scientific debates, the relation between technological advances and scientific knowledge, and the connection between science and broader social concerns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. There is a growing historical literature on the development of databases and computer networks in biology. On the intersection between sequencing, databases, and computers see Garcia-Sancho (2011, 2012) and Stevens (2013). On the introduction of computers in biology, see De Chadarevian (2002) and November (2012).

  2. In the precipitin reaction, serum from one animal species, which had been previously injected with serum from another species, was made to react with serum from the second, or even a third species. The reaction formed a precipitate (therefore the name), and Nuttall devised quantitative and even quantitative methods to measure the “strength” of the reaction.

  3. The concept of metabolic pathways emerged one decade later, with the use of radioisotope tracers in the elucidation of the two phases of photosynthesis (Creager 2013).

  4. Historians of molecular biology have argued that the origins of the field reside in a complex process that transformed the professional identity of biophysicists (the name preferred by those working in Cambridge before 1962), biochemists (like Sanger), and protein chemists (like Anfinsen and Linus Pauling). Eventually, these approaches coalesced in “molecular biology,” a term coined in 1938 by Warren Weaver, head of the Natural Sciences Division of the Rockefeller Foundation (see De Chadarevian 1996).

  5. See De Chadarevian (1998) and Strasser (1999, 2002) for the context and impact of Pauling’s paper on molecular disease..

  6. On Pauling’s political activism see Goertzel and Goertzel (1995), Hager 2011, and Hamblin (2007).

  7. In consonance with contemporary views, Zuckerkandl and Pauling included an eugenic strategy to deal with the increased rate of mutation and disease in the atomic era (on Muller and Dobzhansky’s viewson the matter see Paul 1987, Beatty 1987, 1993).

  8. As Walter Fitch said one, the molecular clock “was a concept that floated in the air” (personal communication with the author, October 23rd, 1993). Indeed, Anfinsen’s monograph explores the basic idea that each protein, according to its functional constraints, has a characteristic rate of structural change.

  9. The term “sequenator” was used to describe any machine that sequenced the monomers in a polymer, either protein or DNA. In the late 1980s, efforts by Japanese scientists to develop automated DNA sequencers were also called “sequenators.” A complete account is given by Garcia-Sancho (2012). On automation, see Keating et al. (1999).

  10. Cavalli-Sforza and Edwards (1966, 1967) introduced distance matrix methods and parsimony into human evolutionary trees. They used blood groups geographical distribution data, and took advantage of recent developments in the electrophoretic analysis of blood components.

  11. The history of the introduction of computers in biology has been studied by Lenoir (1999), Hagen (2001), De Chadarevian (2002), November (2012), Strasser (2010b), Garcia-Sancho (2011, 2012), and Stevens (2013).

  12. Zuckerkandl was in good terms will all of them, though. He had met Mays in 1958 at te Roscoff Marine Station in France, where he worked back then. He remembered how Dobzhansky had approached him, after the Wenner-Gren Conference in Austria in 1964, and recognized the value of molecular data (personal communication with the author, Palo Alto, November 1993).

References

  • Anfinsen CB (1959) The molecular basis of evolution. Wiley, New York

    Google Scholar 

  • Anfinsen CB (1972) Studies on the principles that govern the folding of protein chains. Nobel lecture, Dec 11th: 55–71

  • Anfinsen CB (1989) Commentary on ‘Studies on the structural basis of ribonuclease activity. Biochim Biophys Acta 1000:197–199

    Article  CAS  PubMed  Google Scholar 

  • Aronson JD (2002) ’Molecules and monkeys’: George Gaylord Simpson and the challenge of molecular evolution. Hist Philos Life Sci 24:441–465

    Article  PubMed  Google Scholar 

  • Baldwin E (1937) An introduction to comparative biochemistry. Cambridge University Press, Cambridge

    Google Scholar 

  • Bangham J (2014) Blood groups and human groups: collecting and calibrating genetic data after World War Two. Stud Hist Philos Biol Biomed Sci 47:74–86

    Article  PubMed  PubMed Central  Google Scholar 

  • Beatty J (1987) Weighing the risks: stalemate in the classical-balance controversy. J Hist Biol 20(3):289–319

    Article  Google Scholar 

  • Beatty J (1990) Evolutionary anti-reductionism: historical reflections. Biol Philos 5:199–210

    Article  Google Scholar 

  • Beatty J (1993) Scientific collaboration, internationalism, and diplomacy: the case of the atomic bomb casualty commission. J Hist Biol 26(2):205–231

    Article  Google Scholar 

  • Beatty J (1994) The proximate/ultimate distinction in the multiple careers of Ernst Mayr. Biol Philos 9:333–356

    Article  Google Scholar 

  • Boyd WC (1963) Genetics and the human race. Science 140:1057–1063

    Article  CAS  PubMed  Google Scholar 

  • Britten RJ, Kohne D (1968) Repeated sequences in DNA. Science 161(3841):529–540

    Article  CAS  PubMed  Google Scholar 

  • Buettner-Janusch J (1962) Biochemical genetics of the primates hemoglobins and transferrins. Ann NY Acad Sci 102:235–248

    Article  CAS  PubMed  Google Scholar 

  • Cavalli-Sforza LL, Edwards AWF (1966) Estimation procedures for evolutionary branching processes. Bull Int Stat Inst 41:803–808

    Google Scholar 

  • Cavalli-Sforza LL, Edwards SV (1967) Phylogenetic analysis: models and estimation procedures. Evolution 21(3):550–570

    Article  Google Scholar 

  • Chiang HH (2009) The laboratory technology of discrete molecular separation: the historical development of gel electrophoresis and the material epistemology of biomolecular science, 1945-1970. J Hist Biol 42(3):495–527

    Article  PubMed  Google Scholar 

  • Creager ANH (2007) Anfinsen Christian, B. New dictionary of scientific biography. Charles Scribners, New York, pp 76–82

    Google Scholar 

  • Creager A (2013) Life atomic: a history of radioisotopes in science and medicine. The University of Chicago Press, Chicago

    Book  Google Scholar 

  • Crow JF (2008) Motoo Kimura and the Rise of Neutralism. In: Oren H, Michael D (eds) Rebels, Maverick and Heretics in biology. Yale University, New York, pp 265–280

    Google Scholar 

  • Dayhoff MO (1969) Computer analysis of protein evolution. Sci Am 221:86–95

    Article  CAS  PubMed  Google Scholar 

  • Dayhoff MO, Schwartz RM (1978) A model of evolutionary change in proteins. In: Dayhoff MO, Schwartz RM (eds) Atlas of protein sequence and structure, 5th edn. National Biomedical Research Foundation, Washington, DC, pp 345–352

    Google Scholar 

  • Dayhoff MO, Eck RV, Chang MA, Sochard MR (1965) Atlas of protein sequence and structure. National Biomedical Research Foundation, Silver Spring

    Google Scholar 

  • De Chadarevian S (1996) Sequences, conformation, information: biochemists and molecular biologists in the 1950s. J Hist Biol 29:361–386

    Article  CAS  PubMed  Google Scholar 

  • De Chadarevian S (1998) Following molecules: hemoglobin between the clinic and the laboratory. In: de Chadarevian S, Kamminga H (eds) Molecularizing biology and medicine. New practices and alliances 1910–1970s. Harwood Academic, Australia, pp 171–201

    Chapter  Google Scholar 

  • De Chadarevian S (2002) Designs for life: molecular biology after World War II. Cambridge University Press, Cambridge

    Google Scholar 

  • De Souza VS, Santos RV (2014) The emergence of human population genetics and narratives about the formation of the Brazilian nation (1950–1960). Stud Hist Philos Sci Part C 47:97–107

    Article  Google Scholar 

  • Dietrich MR (1994) The origins of the neutral theory of molecular evolution. J Hist Biol 27(1):21–59

    Article  CAS  PubMed  Google Scholar 

  • Dietrich MR (1996) Montecarlo experiments and the defense of diffusion models in molecular population genetics. Biol Philos 11(3):339–356

    Article  Google Scholar 

  • Dietrich MR (2006) From Mendel to molecules: a brief history of evolutionary genetics. In: Fox CW, Wolf JB (eds) Evolutionary genetics: concepts and case studies. Oxford University Press, New York

    Google Scholar 

  • Dietrich M, Suárez-Díaz E (2016) History of Molecular Evolution. In: Richard MK, Betty VS (eds) Encyclopedia of Biological Evolution. Elsevier Press, New York, pp 55–60

    Chapter  Google Scholar 

  • Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284(5423):2124–2212

    Article  CAS  PubMed  Google Scholar 

  • Doolittle WF (2005) If the Tree of Life fell, would it make a sound? In: Sapp J (ed) Microbial phylogeny and evolution. Concepts and controversies. Oxford University Press, Oxford, pp 119–133

    Google Scholar 

  • Doty P, Marmur J, Eigner J, Schilkdraut C (1960) Strand separation and specific recombination in deoxyribonuvcleic acids: physical chemical studies. Proc Natl Acad Sci 46(4):461–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edman P, Begg G (1967) A protein sequenator. Eur J Biochem 1:80–91

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1987) Estimation of hominoid phylogeny from a DNA hybridization data set. J Mol Evol 3:123–131

    Article  Google Scholar 

  • Felsenstein J (2001) The troubled growth of statistical phylogenetics. Syst Biol 50(4):465–467

    Article  CAS  PubMed  Google Scholar 

  • Fitch WM (2000) Homology, a personal view on some of the problems. Trends Genet 16(5):227–231

    Article  CAS  PubMed  Google Scholar 

  • Fitch WM, Margoliash E (1967) Construction of phylogenetic trees. Science 155(3760):279–284

    Article  CAS  PubMed  Google Scholar 

  • Fitch WM, Margoliash E (1968) The construction of phylogenetic trees. II. How well do they reflect past history? Brookhaven Symp Biol 21:217

    CAS  PubMed  Google Scholar 

  • Florkin M (1949) Biochemical evolution. Academic Press, New York

    Google Scholar 

  • Garcia-Sancho M (2010) A new insight into Sanger’s development of sequencing: from proteins to DNA, 1943–1977. J Hist Biol 43(2):265–323

    Article  PubMed  Google Scholar 

  • Garcia-Sancho M (2011) From metaphor to practices: the introduction of information engineers into the first DNA sequence database. Hist Philos Life Sci 33(1):71–104

    PubMed  Google Scholar 

  • Garcia-Sancho M (2012) Biology, computing, and the history of molecular sequencing. from proteins to DNA, 1945–2000. Palgrave MacMillan, London

    Google Scholar 

  • Goertzel G, Goertzel B (1995) Linus Pauling: a life in science and politics. Basic Books, New York

    Google Scholar 

  • Goodman M (1962) Immunochemistry of the primates and primate evolution. Ann NY Acad Sci 102:219–234

    Article  CAS  PubMed  Google Scholar 

  • Goodman M (1964) Man´s place in the phylogeny of the primates as reflected in serum proteins. In: Washburn SL (ed) Classification and human evolution. Methuen, London, pp 204–234

    Google Scholar 

  • Goodman M et al (1983) Evidence on human origins from haemoglobins of African apes. Nature 303(5917):546–548

    Article  CAS  PubMed  Google Scholar 

  • Hagen J (1999) Naturalists, molecular biologists, and the challenges of molecular evolution. J Hist Biol 32:321–341

    Article  CAS  PubMed  Google Scholar 

  • Hagen J (2001) The introduction of computers into systematic research in the United States during the 1960s. Stud Hist Philos Biol Biomed Sci 32:291–314

    Article  Google Scholar 

  • Hagen J (2003) The statistical frame of mind in systematic biology from quantitative zoology to biometry. J Hist Biol 36:353–384

    Article  PubMed  Google Scholar 

  • Hagen J (2010) Waiting for sequences: Morris Goodman, immunodiffusion experiments, and the origins of molecular anthropology. J Hist Biol 43(4):697–725

    Article  PubMed  Google Scholar 

  • Hager T (2011) Force of nature: the life of Linus Pauling. Monroe Press, New York

    Google Scholar 

  • Hamblin JD (2007) A dispassionate and objective effort: negotiating the first study on the biological effects of atomic radiation. J Hist Biol 40:147–177

    Article  PubMed  Google Scholar 

  • Harris H (1966) Enzyme polymorphisms in man. Proc R Soc Lond B 164(995):298–310

    Article  CAS  PubMed  Google Scholar 

  • Hubby JL, Lewontin RC (1966) A molecular approach to the study of genic heterozygosity in natural populations I. The number of alleles at different loci in Drosophila pseudoobscura. Genetics 54:577–594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson RR, Kreitman M, Aguadé M (1987) A test of neutral molecular evolution based on nucleotide data. Genetics 116(1):153–159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hull DL (1988) Science as a process: an evolutionary account of the social and conceptual development of science. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Ingram VM (1956) A specific chemical difference between globins of normal and sickle-cell anemia hemoglobins. Nature 178:792–794

    Article  CAS  PubMed  Google Scholar 

  • Itano HA (1957) The human hemoglobins: their properties and genetic control. Adv Protein Chem 12:215–268

    Article  CAS  Google Scholar 

  • Keating P, Limoges C, Alberto C (1999) The automated laboratory. In: Michael F, Everett M (eds) The practices of human genetics. Dordrecht, Kluwer Academic, pp 125–142

    Chapter  Google Scholar 

  • Kimura M (1968) Evolutionary rate at the molecular level. Nature 217:624–626

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1969) The rate of molecular evolution considered from the standpoint of population genetics. PNAS 63:1181–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura M, Ohta T (1971) Protein polymorphism as a phase in molecular evolution. Nature 229:467–469

    Article  CAS  PubMed  Google Scholar 

  • King J, Jukes T (1969) Non-Darwinian evolution. Science 164:788–798

    Article  CAS  PubMed  Google Scholar 

  • Kreitman M (1983) Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila melanogaster. Nature 304:412–417

    Article  CAS  PubMed  Google Scholar 

  • Kreitman M (1996) The neutral theory is dead. Long live the neutral theory. Bioessays 18(8):678–683

    Article  CAS  PubMed  Google Scholar 

  • Kreitman M (2000) Methods to detect selection in populations with applications to the human. Annu Rev Genomics Hum Genet 1(1):539–559

    Article  CAS  PubMed  Google Scholar 

  • Lenoir T (1999) Sha** biomedicine as an information science. Proceedings of the 1998 conference on the history and heritage of science information systems. In: Bowden ME, Hahn TB, Williams RV (eds). ASIS monographic series. Medford: N. J. Information Today, Inc. pp. 27–45

  • Lewontin RC (1974) The genetic basis of evolutionary change. Columbia University Press, New York

    Google Scholar 

  • Margoliash E (1963) Primary structure and evolution of cytochrome C. Proc Nat Acad Sci 50(4):672–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marks J (1996) The legacy of serological studies in American physical anthropology. Hist Philos Life Sci 18:345–362

    CAS  PubMed  Google Scholar 

  • Marks J (2012) The origins of anthropological genetics. Curr Anthropol 53(S5):S161–S172

    Article  Google Scholar 

  • Marmur J, Doty P (1959) Heterogeneity in deoxyribonucleic Acids: I. Dependence on composition of the configuration stability of DNA´s. Nature 183:1427–1428

    Article  CAS  PubMed  Google Scholar 

  • Mazumdar PMH (1992) Eugenics, human genetics and human failings. The eugenic society and its critics in Britain. Routledge Press, London

    Google Scholar 

  • Morgan GJ (1998) Emile Zuckerkandl, Linus Pauling and the molecular evolutionary clock, 1959–1965. J Hist Biol 31:155–178

    Article  CAS  PubMed  Google Scholar 

  • Needleman S, Wunsch C (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48(3):443–453

    Article  CAS  PubMed  Google Scholar 

  • November J (2012) Biomedical computing. Digitalizing life in the United States. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Nuttal GHF (1904) Blood Immunity and Blood Relationship. Cambridge University Press, Cambridge

    Google Scholar 

  • Ohno S (1972) So much “junk” DNA in our genome. Brookhaven Symp Biol 23:366–370

    CAS  PubMed  Google Scholar 

  • O’Malley MA, Boucher Y (2005) Paradigm change in evolutionary microbiology. Stud Hist Philos Biol Biomed Sci 36:183–208

    Article  PubMed  Google Scholar 

  • O’Malley M, Martin W, John D (2010) The tree of life: introduction to an evolutionary debate. Biol Philos 25(4):441–453

    Article  Google Scholar 

  • Ohta T (1992) The nearly neutral theory of molecular evolution. Annu Rev Ecol Syst 23:263–286

    Article  Google Scholar 

  • Paul DB (1987) Our load of mutations’ revisited. J Hist Biol 20(3):321–335

    Article  Google Scholar 

  • Powell JR (1994) Molecular techniques in population genetics: a brief history. In: Schierwater B, Streit B, Wagner GP, De Salle R (eds) Molecular ecology and evolution. Approaches and applications. Verlag, Birkhauser, pp 131–156

    Chapter  Google Scholar 

  • Sapp J (ed) (2005) Microbial phylogeny and evolution. Concepts and controversies. Oxford University Press, Oxford

    Google Scholar 

  • Sarich VM, Wilson AC (1967) Immunological time-scale for hominoid evolution. Science 158:1200–1203

    Article  CAS  PubMed  Google Scholar 

  • Schmid CW, Marks J (1990) DNA Hybridization as a guide into phylogeny: physical and chemical limits. J Mol Evol 30:237–246

    Article  CAS  PubMed  Google Scholar 

  • Sibley CG, Ahlquist JE (1984) The phylogeny of the hominoid primates, as indicated by DNA–DNA hybridization. J Mol Evol 20:2–15

    Article  CAS  PubMed  Google Scholar 

  • Sibley CG, Comstock JA, Ahlquist JE (1990) DNA Hybridization evidence of hominoid phylogeny: a reanalysis of the data. J Mol Evol 30:202–236

    Article  CAS  PubMed  Google Scholar 

  • Simpson GG (1964) The meaning of taxonomic statements. In: Washburn SL (ed) Classification and human evolution. Methuen and Co. Ltd, London, pp 1–31

    Google Scholar 

  • Smith TF (1990) The history of the genetic sequence databases. Genomics 6:701–707

    Article  CAS  PubMed  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy. The principles and practice of numerical classification. W. H. Freeman, San Francisco

    Google Scholar 

  • Stephenson M (1930/1949) Bacterial metabolism (3rd ed). London, Longmans, Green

  • Stevens H (2013) Life out of sequence. A data-driven history of informatics. The University of Chicago Press, Chicago

    Book  Google Scholar 

  • Strasser BJ (1999) Sickle cell anemia, a molecular disease. Science 286(5444):1488–1490

    Article  CAS  PubMed  Google Scholar 

  • Strasser BJ (2002) Linus Pauling’s “molecular diseases”: between history and memory. Am J Med Genet 115(2):83–93

    Article  PubMed  Google Scholar 

  • Strasser BJ (2010a) Laboratories, museums, and the comparative perspective: Alan A. Boyden’s quest for objectivity in serological taxonomy, 1924–1962. Hist Stud Nat Sci 40(2):149–182

    Article  PubMed  Google Scholar 

  • Strasser BJ (2010b) Collecting, comparing, and computing sequences: the making of Margaret O. Dayhoff’s ‘Atlas of Protein Sequence and Structure’, 1954–1965. J Hist Biol 43:623–660

    Article  PubMed  Google Scholar 

  • Strasser BJ (2011) The experimenter’s museum: Genbank, natural history and the moral economies of biomedicine. Isis 102(1):60–96

    Article  PubMed  Google Scholar 

  • Suárez E (2001) Satellite-DNA: a case study for the evolution of experimental techniques. Stud Hist Philos Biol Biomed Sci 32(1):31–57

    Article  Google Scholar 

  • Suárez-Díaz E (2007) The Rhetoric of informational molecules authority and promises in the early days of molecular evolution. Sci Context 20(4):649–677

    Article  Google Scholar 

  • Suárez-Díaz E (2010) Making room for new faces: evolution and the growth of bioinformatics. Hist Philos Life Sci 32(1):65–89

    PubMed  Google Scholar 

  • Suárez-Díaz E (2014a) The long and winding road of molecular data in phylogenetic analysis. J Hist Biol 47(3):443–478

    Article  Google Scholar 

  • Suárez-Díaz E (2014b) Indigenous populations in Mexico: medical genetics and cultural anthropology in the work of Ruben Lisker in the 1960s. Stud Hist Philos Biol Biomed Sci 47:108–117

    Article  PubMed  Google Scholar 

  • Suárez-Díaz E, Anaya-Muñoz V (2008) History, objectivity and the construction of molecular phylogenies. Stud Hist Philos Biol Biomed Sci 39:451–458

    Article  PubMed  Google Scholar 

  • Templeton AR (1988) The phylogeny of the hominoid primates: a statistical analysis of the DNA–DNA hybridization data. Mol Biol Evol 2:428–433

    Google Scholar 

  • Wilson AC, Sarich VM (1969) A molecular time—scale for human evolution. Proc Nat Acad Sci, USA 63:1088–1093

    Article  CAS  Google Scholar 

  • Zuckerkandl E (1964) Perspectives in molecular anthropology. In: Washburn SL (ed) Classification and human evolution. Methuen and Co.Limited, London, pp 243–272

    Google Scholar 

  • Zuckerkandl E, Pauling L (1965a) Molecules as documents of evolutionary history. J Theor Biol 8:357–366

    Article  CAS  PubMed  Google Scholar 

  • Zuckerkandl E, Pauling L (1965b) Evolutionary divergence and convergence in proteins. In: Vernon Bryson, Henry Vogel (eds) Evolving genes and proteins. Academic Press, New York, pp 97–166

    Chapter  Google Scholar 

  • Zuckerkandl E, Pauling L (1962) Molecular disease, evolution and genic heterogeneity. In: Kasha M, Pullman B (eds) Horizons in biochemistry: Albert Szent-Györyi dedicatory volume. Academic Press, New York, pp 189–225

    Google Scholar 

  • Zuckerkandl E, Schroeder WA (1961) Amino-acid composition of the polypeptide chains of gorilla hemoglobin. Nature 192:984–985

    Article  CAS  Google Scholar 

  • Zuckerkandl E, Richard TJ, Pauling L (1960) A comparison of animal hemoglobins by triptic peptide pattern analysis. PNAS 46:1349–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I want to thank Antonio Lazcano-Araujo for his generous invitation to contribute to this volume. Research for this paper was supported by research Grants from Conacyt (Number 152879), and UNAM-PAPIIT (IN401017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edna Suárez-Díaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suárez-Díaz, E. Molecular Evolution in Historical Perspective. J Mol Evol 83, 204–213 (2016). https://doi.org/10.1007/s00239-016-9772-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-016-9772-6

Keywords

Navigation