Log in

Effect of plant flavonoids on the volume regulation of rat thymocytes under hypoosmotic stress

  • Original article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Cell volume regulation and volume-regulated anion channels are critical for cell survival in non-isosmotic conditions, and dysregulation of this system is detrimental. Although genes and proteins underlying this basic cellular machinery were recently identified, the pharmacology remains poorly explored.

Methods

We examined effects of 16 flavonoids on the regulatory volume decrease (RVD) of thymocytes under hypoosmotic stress assessed by light transmittance and on the activity of volume-sensitive chloride channel by patch-clamp technique.

Results

Comparison of effects of flavonoids on RVD revealed a group of four active substances with lehmannin being the strongest inhibitor (IC50 = 8.8 μM). Structure-functional comparison suggested that hydrophobicity brought about by methoxy, prenyl or lavandulyl groups as well as by the absence of glucosyl fragment together with localization of the phenyl ring B at the position C2 (which is at C3 in totally inactive isoflavones) are important structural determinants for the flavonoids activity as volume regulation inhibitors. All active flavonoids suppressed RVD under Gramicidin D-NMDG hypotonic stress conditions when cationic permeability was increased by an ionophore, gramicidin D, with all extracellular monovalent cations replaced with bulky NMDG+ suggesting that they target volumesensitive anionic permeability. While effects of hispidulin and pulicarin were only partial, lehmannin and pinocembrin completely abolished RVD under Gramicidin D-NMDG conditions. In direct patch-clamp experiments, lehmannin and pinocembrin produced a strong inhibiting effect on the swelling-induced whole-cell chloride conductance in a voltage-independent manner.

Conclusion

Lehmannin, pinocembrin, and possibly hispidulin and pulicarin may serve as leads for develo** effective low-toxic immunomodulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoffmann EK, Lambert IH, Pedersen SF. Physiology of cell volume regulation in vertebrates. Physiol Rev 2009;89(1):193–277.

    Article  CAS  PubMed  Google Scholar 

  2. Okada Y, Sato K, Numata T. Pathophysiology and puzzles of the volume-sensitive outwardly rectifying anion channel. J Physiol (Paris) 2009;587(Pt 10):2141–9.

    CAS  Google Scholar 

  3. Pasantes-Morales H. Channels and volume changes in the life and death of the cell. Mol Pharmacol 2016;90(3):358–70.

    Article  CAS  PubMed  Google Scholar 

  4. Delpire E, Gagnon KB. Water homeostasis and cell volume maintenance and regulation. Curr Top Membr 2018;81:3–52.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Okada Y, Okada T, Islam MR, Sabirov RZ. Molecular identities and ATP release activities of two types of volume-regulatory anion channels, VSOR and Maxi- Cl. Curr Top Membr 2018;81:125–76.

    Article  CAS  PubMed  Google Scholar 

  6. Okada Y, Okada T, Sato-Numata K, Islam MR, Ando-Akatsuka Y, Numata T, et al. Cell volume-activated and volume-correlated anion channels in mammalian cells: their biophysical, molecular, and pharmacological properties. Pharmacol Rev 2019;71(1):49–88.

    Article  CAS  PubMed  Google Scholar 

  7. Savino W, Mendes-da-Cruz DA, Lepletier A, Dardenne M. Hormonal control of T- cell development in health and disease. Nat Rev Endocrinol 2016;12(2):77–89.

    Article  CAS  PubMed  Google Scholar 

  8. Arrazola A, Rota R, Hannaert P, Soler A, Garay RR. Cell volume regulation in rat thymocytes. J Physiol (Paris) 1993;465:403–14.

    CAS  Google Scholar 

  9. Soler A, Rota R, Hannaert P, Cragoe Jr EJ, Garay RR. Volume-dependent K+ and Cl- fluxes in rat thymocytes. J Physiol (Paris) 1993;465:387–401.

    CAS  Google Scholar 

  10. Kurbannazarova RS, Tashmukhamedov BA, Sabirov RZ. Osmotic water permeability and regulatory volume decrease of rat thymocytes. Gen Physiol Biophys 2003;22(2):221–32.

    CAS  PubMed  Google Scholar 

  11. Dobrovinskaya O, Delgado-Enciso I, Quintero-Castro LJ, Best-Aguilera C, Rojas-Sotelo RM, Pottosin I. Placing ion channels into a signaling network of T cells: from maturing thymocytes to healthy T lymphocytes or leukemic T lymphoblasts. Biomed Res Int 2015;2015:750203.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kurbannazarova RS, Bessonova SV, Okada Y, Sabirov RZ. Swelling-activated anion channels are essential for volume regulation of mouse thymocytes. Int J Mol Sci 2011;12(12):9125–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sabirov RZ, Merzlyak PG, Islam MR, Okada T, Okada Y. The properties, functions, and pathophysiology of maxi-anion channels. Pflugers Arch 2016;468(3):405–20.

    Article  CAS  PubMed  Google Scholar 

  14. Sabirov RZ, Kurbannazarova RS, Melanova NR, Okada Y. Volume-sensitive anion channels mediate osmosensitive glutathione release from rat thymocytes. PLoS One 2013;8(1) e55646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sato-Numata K, Numata T, Inoue R, Okada Y. Distinct pharmacological and molecular properties of the acid-sensitive outwardly rectifying (ASOR) anion channel from those of the volume-sensitive outwardly rectifying (VSOR) anion channel. Pflugers Arch 2016;468(5):795–803.

    Article  CAS  PubMed  Google Scholar 

  16. Yusupova SS, Baturov EK, Kiyamitdinova F, Malikov VM. Isoflavonoids of civer mogoltavicum. Chem Nat Compd 1986;22(5):603–4.

    Article  Google Scholar 

  17. Yuldashev MP, Batirov ÉK, Vdovin AD, Malikov VM, Yagudaev MR. Flavonoids of Thermopsis alterniflora. Chem Nat Compd. 1989;25(3):303–8.

    Article  Google Scholar 

  18. Batirov ÉK, Yuldashev MP, Nezhinskaya GA, Malikov VM. Flavonoids of Ferula schair and F. Samarkandica. Chem Nat Compd. 1979;15(5):642–3.

    Article  Google Scholar 

  19. Sham’yanov ID, Batirov ÉK, Yuldashev MP, Malikov VM, Mallabaev A. Components of Saussurea elegans. Chem Nat Compd. 1983;19(6):763–4.

    Article  Google Scholar 

  20. Ikramov MT, Malasheva FA, Batirov ÉK, Malikov VM. Flavonoids of lagonychium farctum. Chem Nat Compd. 1990;26(2):226–7.

    Article  Google Scholar 

  21. Batirov ÉK, Kiyamitdinova F, Malikov VM. Flavonoids of the epigeal part of Glycyrrhiza glabra. Chem Nat Compd. 1986;22(1):107–8.

    Article  Google Scholar 

  22. Batirov ÉK, Yusupova SS, Sattikulov A, Vdovin AD, Malikov VM, Yagudaev MR. Flavonoids of Ammothamnus lehmannii. Structure of lehmannin and of ammothamnidin. Chem Nat Compd. 1987;23(4):429–35.

    Article  Google Scholar 

  23. Gafurov AZ, Sattikulov A, Yuldashev MP, Batirov ÉK. Flavonoids of the epigeal part of Cicer mogoltavicum. Chem Nat Compd. 1997;33(4):496–7.

    Article  CAS  Google Scholar 

  24. Khushbaktova ZA, Faizieva SK, Syrov VN, Yuldashev MP, Batirov ÉK, Mamatkhanov AU. Isolation, chemical analysis, and study of the hypolipidemic activity of the total flavonoid extract from Thermopsis altherniaflora. Pharm Chem J. 2001;35(3):35–8.

    Article  Google Scholar 

  25. Sagitdinova GV, Éshbakova KA, Khushbaktova ZA, Malikov VM, Olimov V. Flavonoid pulicarpin from Pulicaria salviifolia and its hypolipidemic activity. Chem Nat Compd 1992;28(3-4):286–8.

    Article  Google Scholar 

  26. Kurbannazarova RS, Tashmukhamedov BA, Sabirov RZ. Role of potassium and chlorine channels in the regulation of thymocyte volume in rats. Bull Exp Biol Med 2008;145(5):544–7.

    Article  Google Scholar 

  27. Hempling HG, Thompson S, Dupre A. Osmotic properties of human lymphocyte. J Cell Physiol 1977;93(2):293–302.

    Article  CAS  PubMed  Google Scholar 

  28. Sabirov RZ, Manjosova MA, Tadjibaeva ET, Krasilnikov OV. The interaction of amphotericin B with cell membrane of rat thymocytes. Gen Physiol Biophys 1993;12(3):249–57.

    CAS  PubMed  Google Scholar 

  29. Kelkar DA, Chattopadhyay A. The gramicidin ion channel: a model membrane protein. Biochim Biophys Acta 2007;1768(9):2011–25.

    Article  CAS  PubMed  Google Scholar 

  30. Grinstein S, Clarke CA, Rothstein A, Gelfand EW. Volume-induced anion conductance in human B lymphocytes is cation independent. Am J Physiol 1983;245(1):C160–3.

    Article  CAS  PubMed  Google Scholar 

  31. Grinstein S, Dupre A, Rothstein A. Volume regulation by human lymphocytes. Role of calcium. J Gen Physiol 1982;79(5):849–68.

    Article  CAS  PubMed  Google Scholar 

  32. Koni PA, Khanna R, Chang MC, Tang MD, Kaczmarek LK, Schlichter LC, et al. Compensatory anion currents in Kv1.3 channel-deficient thymocytes. J Biol Chem 2003;278(41):39443–51.

    Article  CAS  PubMed  Google Scholar 

  33. Teisseyre A, Gasiorowska J, Michalak K. Voltage-gated potassium channels Kvl.3-Potentially new molecular target in cancer diagnostics and therapy. Adv Clin Exp Med 2015;24(3):517–24.

    Article  PubMed  Google Scholar 

  34. Xue Y, Li H, Zhang Y, Han X, Zhang G, Li W, et al. Natural and synthetic flavonoids, novel blockers of the volume-regulated anion channels, inhibit endothelial cell proliferation. Pflugers Arch 2018;470(10):1473–83.

    Article  CAS  PubMed  Google Scholar 

  35. Qiu Z, Dubin AE, Mathur J, Tu B, Reddy K, Miraglia LJ, et al. SWELL1, a plasma membrane protein, is an essential component of volume-regulated anion channel. Cell 2014;157(2):447–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Voss FK, Ullrich F, Munch J, Lazarow K, Lutter D, Mah N, et al. Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC. Science 2014;344(6184):634–8.

    Article  CAS  PubMed  Google Scholar 

  37. Kumar L, Chou J, Yee CS, Borzutzky A, Vollmann EH, von Andrian UH, et al. Leucine-rich repeat containing 8A (LRRC8A) is essential for T lymphocyte development and function. J Exp Med 2014;211(5):929–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Khushbaktova ZA, Yusupova ZM, Zamaraeva MV, Tadzhibaeva ET, Syrov VN, Kh Batirov E, et al. Interrelationships of the structures and antioxidant activities of some flavonoids from the plants of Central Asia. Chem Nat Comp 1996;32(3):4–338.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravshan Z. Sabirov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rustamova, S.I., Tsiferova, N.A., Khamidova, O.J. et al. Effect of plant flavonoids on the volume regulation of rat thymocytes under hypoosmotic stress. Pharmacol. Rep 71, 1079–1087 (2019). https://doi.org/10.1016/j.pharep.2019.05.023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2019.05.023

Keywords

Navigation