Log in

Development of a fluorescent probe for cefazolin detection based on solvent-based de-emulsification dispersive liquid–liquid microextraction of silver nanoparticles

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A novel, simple, and rapid method has been developed for the fluorimetric determination of trace levels of cefazolin. The method is based on the synthesis of silver nanoparticles (AgNPs) as fluorescent probes using resorcinol as a reducing and cap** agent and then their extraction into the 1-octanol by a highly efficient solvent-based de-emulsification dispersive liquid–liquid microextraction technique. The interaction of cefazolin with silver affected the fluorescence intensity of AgNPs in the organic phase that creates a micro-probe fluorimetric detection of this antibiotic at excitation/emission wavelengths of 410/527 nm. Under the established optimum conditions, the linear analytical range was from 0.80 to 12.00 ng mL−1 of cefazolin with a detection limit of 0.55 ng mL−1. The relative standard deviation for ten replicate measurements of 2 and 10 ng mL−1 of cefazolin was 4.18 and 1.88%, respectively. The suggested method was successfully applied to the determination of cefazolin in pharmaceutical formulation, human urine and plasma.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. H. Fayazfar, A. Afshar, A. Dolati, Appl. Biochem. Biotechnol. 173, 1511 (2014). https://doi.org/10.1007/s12010-014-0944-9

    Article  CAS  PubMed  Google Scholar 

  2. Y. Fazli, Z. Shariatinia, Mater. Sci. Eng. C 71, 641 (2017). https://doi.org/10.1016/j.msec.2016.10.048

    Article  CAS  Google Scholar 

  3. R.K. Papanna, J.B. Krishnegowda, P. Nagaraja, Int. J. Pharm. Pharm. Sci. 7, 194 (2015)

    CAS  Google Scholar 

  4. G. Nayak, M. K. Trivedi, A. Branton, D. Trivedi, S. Jana, Adv. Biotech. Micro. 13, 555852 (2019). https://doi.org/10.19080/AIBM.2019.13.555852

  5. N. Chansud, O. Bunkoed, J. Pharm. Biomed. Anal. 193, 113715 (2021). https://doi.org/10.1016/j.jpba.2020.113715

    Article  CAS  PubMed  Google Scholar 

  6. B.S. Rechelo, A.C. Kogawa, H.R.N. Salgado, Spectrochimi. Acta A Mol. Biomol Spectrosc. 208, 157 (2019). https://doi.org/10.1016/j.saa.2018.09.058

    Article  CAS  Google Scholar 

  7. C. Dorn, A. Kratzer, S. Schießer, F. Kees, H. Wrigge, P. Simon, J. Chromatogr. B. 1118, 51 (2019). https://doi.org/10.1016/j.jchromb.2019.04.025

    Article  CAS  Google Scholar 

  8. T. Zhu, K.H. Row, J. Liq. Chromatogr. Relat. Technol. 32, 1423 (2009). https://doi.org/10.1080/10826070902900954

    Article  CAS  Google Scholar 

  9. H. Sun, J. Wang, T. Wang, Luminescence J. Biologi. Chem. Lumines. 28, 592 (2013). https://doi.org/10.1002/bio.2398

    Article  CAS  Google Scholar 

  10. B.X. Mayer, M. Petsch, E.M. Tschernko, M. Müller, Electrophoresis 24, 1215 (2003). https://doi.org/10.1002/elps.200390156

    Article  CAS  PubMed  Google Scholar 

  11. J. Wang, X. Fan, Y. Liu, Z. Du, Y. Feng, L. Jia, J. Zhang, Anal. Methods. 9, 1282 (2017). https://doi.org/10.1039/C6AY03444F

    Article  CAS  Google Scholar 

  12. M. Amoli-Diva, Z. Taherimaslak, M. Allahyari, K. Pourghazi, M.H. Manafi, Talanta 134, 98 (2015). https://doi.org/10.1016/j.talanta.2014.11.007

    Article  CAS  PubMed  Google Scholar 

  13. M. Rezaee, Y. Assadi, M.R. Milani Hosseini, E. Aghaee, F. Ahmadi, S. Berijani, J. Chromatogr. A. 1116, 1 (2006). https://doi.org/10.1016/j.chroma.2006.03.007

    Article  CAS  PubMed  Google Scholar 

  14. T. Hamamoto, S. Katsuta, Anal. Sci. 34, 1439 (2018). https://doi.org/10.2116/analsci.18P369

    Article  CAS  PubMed  Google Scholar 

  15. M. Guiñez, L.D. Martinez, L. Fernandez, S. Cerutti, Microchem. J. 131, 1 (2017). https://doi.org/10.1016/j.microc.2016.10.020

    Article  CAS  Google Scholar 

  16. X. Hu, L. Zhang, H. **a, M. Peng, Y. Zhou, Z. Xu, X. Peng, J. Sep. Sci. 44, 1510 (2021). https://doi.org/10.1002/jssc.202001055

    Article  CAS  PubMed  Google Scholar 

  17. C.K. Zacharis, P.D. Tzanavaras, K. Roubos, K. Dhima, J. Chromatogr. A. 1217, 5896 (2010). https://doi.org/10.1016/j.chroma.2010.07.065

    Article  CAS  PubMed  Google Scholar 

  18. M. Guiñez, R. Canales, L.D. Martinez, S. Cerutti, Anal. Methods. 10, 910 (2018). https://doi.org/10.1039/C8AY00021B

    Article  Google Scholar 

  19. B. Majidi, F. Shemirani, Talanta 93, 245 (2012). https://doi.org/10.1016/j.talanta.2012.02.026

    Article  CAS  PubMed  Google Scholar 

  20. W. Ahmad, A. Al-Sibaai, A.S. Bashammakh, H. Alwael, M.S. El-Shahawi, Anal. Methods 6, 69492 (2016). https://doi.org/10.1039/C6RA13072K

    Article  CAS  Google Scholar 

  21. M. Zeeb, M.R. Ganjali, P. Norouzi, Microchim. Acta. 168, 317 (2010). https://doi.org/10.1007/s00604-009-0282-8

    Article  CAS  Google Scholar 

  22. K. Jia, P. Wang, L. Yuan, X. Zhou, W. Chen, X. Liu, J. Mater. Chem. C 3, 3522 (2015). https://doi.org/10.1039/C4TC02850C

    Article  CAS  Google Scholar 

  23. P. Sivakumar, S. Priyatharshni, K. Kumar, Mater. Chem. Phys. 240, 122167 (2020). https://doi.org/10.1016/j.matchemphys.2019.122167

    Article  CAS  Google Scholar 

  24. J.A. Dean, Analytical chemistry handbook (McGraw-Hill, New York, 1995)

    Google Scholar 

  25. J.R. Ansari, N. Singh, R. Ahmad, D. Chattopadhyay, A. Datta, Opt. Mater. 94, 138 (2019). https://doi.org/10.1016/j.optmat.2019.05.023

    Article  CAS  Google Scholar 

  26. H.W. Park, S.M. Alam, S.H. Lee, M.M. Karim, S.M. Wabaidur, M. Kang, J.H. Choi, Luminescence 24, 367 (2009). https://doi.org/10.1002/bio.1119

    Article  CAS  PubMed  Google Scholar 

  27. Y. Chen, W. Chang, X. Zhu, R. Wang, F. Tian, Indian J. Biochem. Biophys., 57, 270 (2020). http://op.niscair.res.in/index.php/IJBB/article/view/36487

  28. L. Maretti, P.S. Billone, Y. Liu, J.C. Scaiano, J. Am. Chem. Soc. 131, 13972 (2009). https://doi.org/10.1021/ja900201k

    Article  CAS  PubMed  Google Scholar 

  29. D. Ghosh, N. Chattopadhyay, J. Lumin. 160, 223 (2015). https://doi.org/10.1016/j.jlumin.2014.12.018

    Article  CAS  Google Scholar 

  30. M. Behbahani, F. Najafi, S. Bagheri, M. Kalate Bojdi, P. Ghareh Hassanlou, A. Bagheri, Environ. Monit. Assess. 186, 2609 (2014). https://doi.org/10.1007/s10661-013-3564-x

  31. S. Panigrahi, S. Praharaj, S. Basu, S.K. Ghosh, S. Jana, S. Pande, T. Vo-Dinh, H. Jiang, T. Pal, J. Phys. Chem. B 110, 13436 (2006). https://doi.org/10.1021/jp062119l

    Article  CAS  PubMed  Google Scholar 

  32. S. Percin-Ozkorucuklu, B. Uka, G. Yildirim-Bastemur, J. Turkish Chem. Soc. Sect. Chem. 6, 217 (2019). https://doi.org/10.18596/jotecsa.469028

  33. J.A. Reeder, I.A. Abdallah, T. Bach, C.T. O’Sullivan, Y. Xu, D. Nalbant, G. An, J. Pharma. Biomed. Anal. 210, 114521 (2022). https://doi.org/10.1016/j.jpba.2021.114521

    Article  CAS  Google Scholar 

  34. H. Abdel-Aziz, M.M. Tolba, N. El-Enany, F.A. Aly, M.E. Fathy, R. Soc, Open Sci. 8, 210329 (2021). https://doi.org/10.1098/rsos.210329

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are sincerely grateful to Shahid Chamran University of Ahvaz Research Council for the financial support of this research.

Funding

This study was funded by Shahid Chamran University of Ahvaz (SCU.SC99.173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saadat Rastegarzadeh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rastegarzadeh, S., Kalantaripour, M. & Pourreza, N. Development of a fluorescent probe for cefazolin detection based on solvent-based de-emulsification dispersive liquid–liquid microextraction of silver nanoparticles. ANAL. SCI. 39, 257–266 (2023). https://doi.org/10.1007/s44211-022-00230-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-022-00230-3

Keywords

Navigation