Log in

A photo-controlled fluorescent switching based on carbon dots and photochromic diarylethene for bioimaging

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Carbon dots (CDs) as luminescent zero-dimensional carbon nanomaterials have good aqueous dissolution, photostability, high quantum yield, and tunability of emission color. It has great application potential in many fields, including bioimaging, labeling of biological species, drug delivery, and sensing in biomedical. However, controlling the fluorescence emission of carbon dots remains a formidable challenge. Herein, we designed and exploited a photo-controlled fluorescent switching based on photochromic diarylethene (DT) and CDs for bioimaging. It could be modulated reversibly between “ON” and “OFF” under UV/vis light exposure. The fluorescent modulation efficiency was as high as 95.3%. The fluorescent switching could be used to the bioimaging in HeLa cells with low cell toxicity. Therefore, this fluorescent switching could be a promising candidate in many potential application areas, especially in bioimaging.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All relevant data are within the manuscript and its Supplementary files.

References

  1. Pirsaheb, M., Asadi, A., Sillanpää, M., & Farhadian, N. (2018). Application of carbon quantum dots to increase the activity of conventional photocatalysts: A systematic review. Journal of Molecular Liquids, 271, 857–871.

    Article  CAS  Google Scholar 

  2. Xu, X., Ray, R., Gu, Y., Ploehn, H. J., Gearheart, L., Raker, K., & Scrivens, W. A. (2004). Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Journal of the American Chemical Society, 126, 12736–12737.

    Article  CAS  PubMed  Google Scholar 

  3. Gao, G., Jiang, Y.-W., Yang, J., & Wu, F.-G. (2017). Mitochondria-targetable carbon quantum dots for differentiating cancerous cells from normal cells. Nanoscale, 9, 18368–18378.

    Article  CAS  PubMed  Google Scholar 

  4. Jalili, R., & Amjadi, M. (2018). Bio-inspired molecularly imprinted polymer–green emitting carbon dot composite for selective and sensitive detection of 3-nitrotyrosine as a biomarker. Sensors and Actuators B: Chemical, 255, 1072–1078.

    Article  CAS  Google Scholar 

  5. Ren, X., Lu, P., Feng, R., Zhang, T., Zhang, Y., Wu, D., & Wei, Q. (2018). An ITO-based point-of-care colorimetric immunosensor for ochratoxin A detection. Talanta, 188, 593–599.

    Article  CAS  PubMed  Google Scholar 

  6. Paudyal, S., Vallejo, F. A., Cilingir, E. K., Zhou, Y., Mintz, K. J., Pressman, Y., Gu, J., Vanni, S., Graham, R. M., & Leblanc, R. M. (2022). DFMO carbon dots for treatment of neuroblastoma and bioimaging. ACS Applied Bio Materials, 5, 3300–3309.

    Article  CAS  PubMed  Google Scholar 

  7. Zhao, Y., Li, Y., Zhang, P., Yan, Z., Zhou, Y., Du, Y., Qu, C., Song, Y., Zhou, D., Qu, S., & Yang, R. (2021). Cell-based fluorescent microsphere incorporated with carbon dots as a sensitive immunosensor for the rapid detection of Escherichia coli O157 in milk. Biosensors & Bioelectronics, 179, 113057.

    Article  CAS  Google Scholar 

  8. He, H., Liu, X., Li, S., Wang, X., Wang, Q., Li, J., Wang, J., Ren, H., Ge, B., Wang, S., Zhang, X., & Huang, F. (2017). High-density super-resolution localization imaging with blinking carbon dots. Analytical Chemistry, 89, 11831–11838.

    Article  CAS  PubMed  Google Scholar 

  9. Liu, X., Chen, S. Y., Chen, Q., Yao, X., Gelleri, M., Ritz, S., Kumar, S., Cremer, C., Landfester, K., Mullen, K., Parekh, S. H., Narita, A., & Bonn, M. (2020). Nanographenes: Ultrastable, switchable, and bright probes for super-resolution microscopy. Angewandte Chemie International Edition English, 59, 496–502.

    Article  CAS  Google Scholar 

  10. Yi, Y., Liu, L., Wu, Y., & Zhu, G. (2021). Fluorescent and colorimetric dual-signal enantiomers recognition via enzyme catalysis: The case of glucose enantiomers using nitrogen-doped silicon quantum dots/silver probe coupled with beta-D-glucose oxidase. Analytical Sciences, 37, 275–281.

    Article  CAS  PubMed  Google Scholar 

  11. Kou, X., Jiang, S., Park, S. J., & Meng, L. Y. (2020). A review: Recent advances in preparations and applications of heteroatom-doped carbon quantum dots. Dalton Transactions, 49, 6915–6938.

    Article  CAS  PubMed  Google Scholar 

  12. Jiang, G., Jia, Y., Cui, S., & Pu, S. (2020). Photo-modulated reversible switching of fluorescence from ZnO quantum dots with a photochromic diarylethene. ChemistrySelect, 5, 13919–13924.

    Article  CAS  Google Scholar 

  13. Wen, P., Xu, Y., Li, S., Sun, Z., Panmai, M., **ang, J., Tie, S., & Lan, S. (2021). Two-dimensional closely-packed gold nanoislands: A platform for optical data storage and carbon dot generation. Applied Surface Science, 555, 149586.

    Article  CAS  Google Scholar 

  14. Yang, C., Li, T., Yang, Q., Guo, Y., & Tao, T. (2022). One-step hydrothermal synthesis of fluorescent silicon nanoparticles for sensing sulfide ions and cell imaging. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 273, 121048.

    Article  CAS  PubMed  Google Scholar 

  15. Peng, H.-S., & Chiu, D. T. (2015). Soft fluorescent nanomaterials for biological and biomedical imaging. Chemical Society Reviews, 44, 4699–4722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, J., Chai, X., He, X.-P., Kim, H.-J., Yoon, J., & Tian, H. (2019). Fluorogenic probes for disease-relevant enzymes. Chemical Society Reviews, 48, 683–722.

    Article  CAS  PubMed  Google Scholar 

  17. Witten, A., Tuggle, J., & Waag, R. C. (1988). Ultrasonic imaging with a fixed instrument configuration. Applied Physics Letters, 53, 16–18.

    Article  Google Scholar 

  18. Hu, W., Liu, Y., Lu, Z., & Li, C. M. (2010). Poly[oligo(ethylene glycol) methacrylate-co-glycidyl methacrylate] Brush Substrate for Sensitive Surface Plasmon Resonance Imaging Protein Arrays. Advanced Functional Materials, 20, 3497–3503.

    Article  CAS  Google Scholar 

  19. Zhang, T., Ma, N., Ali, A., Wei, Q., Wu, D., & Ren, X. (2018). Electrochemical ultrasensitive detection of cardiac troponin I using covalent organic frameworks for signal amplification. Biosensors and Bioelectronics, 119, 176–181.

    Article  CAS  PubMed  Google Scholar 

  20. Zhou, X., Gao, X., Song, F., Wang, C., Chu, F., & Wu, S. (2017). A sensing approach for dopamine determination by boronic acid-functionalized molecularly imprinted graphene quantum dots composite. Applied Surface Science, 423, 810–816.

    Article  CAS  Google Scholar 

  21. Wei, J.-R., Chen, H.-Y., Zhang, W., Pan, J.-X., Dang, F.-Q., Zhang, Z.-Q., & Zhang, J. (2017). Ratiometric fluorescence for sensitive and selective detection of mitoxantrone using a MIP@rQDs@SiO2 fluorescence probe. Sensors and Actuators B: Chemical, 244, 31–37.

    Article  CAS  Google Scholar 

  22. Gao, F.-X., Zhao, X.-L., He, X.-W., Li, W.-Y., & Zhang, Y.-K. (2013). A pH and temperature dual-responsive macroporous molecularly imprinted cryogel for enhanced recognition capability towards ovalbumin. Analytical Methods, 5, 6700–6708.

    Article  CAS  Google Scholar 

  23. Jares-Erijman, E. A., & Jovin, T. M. (2003). FRET imaging. Nature Biotechnology, 21, 1387–1395.

    Article  CAS  PubMed  Google Scholar 

  24. Ye, S., Zhang, M., Guo, J., Yu, X., Song, J., Zeng, P., Qu, J., Chen, Y., & Li, H. (2022). Fluorine-nitrogen-codoped carbon dots as fluorescent switch probes for selective Fe(III) and ascorbic acid sensing in living cells. Molecules, 27, 6158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Qi, H., Sun, X., **g, T., Li, J., & Li, J. (2022). Integration detection of mercury(ii) and GSH with a fluorescent “on-off-on” switch sensor based on nitrogen, sulfur co-doped carbon dots. RSC Advances, 12, 1989–1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zheng, Y., Meana, Y., Mazza, M. M. A., Baker, J. D., Minnett, P. J., & Raymo, F. M. (2022). Fluorescence switching for temperature sensing in water. Journal of the American Chemical Society, 144, 4759–4763.

    Article  CAS  PubMed  Google Scholar 

  27. Mo, S., Tan, L., Fang, B., Wu, Z., Su, Z., Zhang, Y., & Yin, M. (2018). Mechanically controlled FRET to achieve high-contrast fluorescence switching. Science China Chemistry, 61, 1587–1593.

    Article  CAS  Google Scholar 

  28. Zhang, X., Wei, J., Qi, H., Bai, B., Wang, H., Wang, D., & Li, M. (2022). Multicolor fluorescence switching material induced by force and acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 268, 120631.

    Article  CAS  PubMed  Google Scholar 

  29. Ding, H., Liu, G., Pu, S., & Zheng, C. (2014). Multi-addressable fluorescent switch based on a photochromic diarylethene with triazole-bridged methylquinoline group. Dyes and Pigments, 103, 82–88.

    Article  CAS  Google Scholar 

  30. Ding, H., Li, B., Pu, S., Liu, G., Jia, D., & Zhou, Y. (2017). A fluorescent sensor based on a diarylethene-rhodamine derivative for sequentially detecting Cu2+ and arginine and its application in keypad lock. Sensors and Actuators B: Chemical, 247, 26–35.

    Article  CAS  Google Scholar 

  31. Liuye, S., Qiu, S., Cui, S., Lu, M., & Pu, S. (2021). A multi-functional chemosensor for dual channel detection of Arg and colorimetric recognition of Cu2+. Dyes and Pigments, 195, 109752.

    Article  CAS  Google Scholar 

  32. Irie, M. (2000). Diarylethenes for memories and switches. Chemical Reviews, 100, 1685–1716.

    Article  CAS  PubMed  Google Scholar 

  33. Qu, S., Zhou, D., Li, D., Ji, W., **g, P., Han, D., Liu, L., Zeng, H., & Shen, D. (2016). Toward efficient orange emissive carbon nanodots through conjugated sp2-domain controlling and surface charges engineering. Advance Material, 28, 3516–3521.

    Article  CAS  Google Scholar 

  34. Yuwen, Z., Mei, H., Li, H., & Pu, S. (2020). A novel diarylethene probe with high selective recognition of CN- and Mg2+ and its application. Journal of Photochemistry and Photobiology A: Chemistry, 401, 112754.

    Article  CAS  Google Scholar 

  35. Xu, S., & Lu, H. (2016). Mesoporous structured MIPs@CDs fluorescence sensor for highly sensitive detection of TNT. Biosensors and Bioelectronics, 85, 950–956.

    Article  CAS  PubMed  Google Scholar 

  36. Qiu, S., Lu, M., Cui, S., Wang, Z., & Pu, S. (2019). A bifunctional sensor based on diarylethene for the colorimetric recognition of Cu2+ and fluorescence detection of Cd2+. RSC Advances, 9, 29141–29148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ding, H., Yu, S.-B., Wei, J.-S., & **ong, H.-M. (2016). Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano, 10, 484–491.

    Article  CAS  PubMed  Google Scholar 

  38. Tian, Z., Li, D., Ushakova, E. V., Maslov, V. G., Zhou, D., **g, P., Shen, D., Qu, S., & Rogach, A. L. (2018). Multilevel data encryption using thermal-treatment controlled room temperature phosphorescence of carbon dot/polyvinylalcohol composites. Advanced Science, 5, 1800795.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dong, Y., Pang, H., Yang, H. B., Guo, C., Shao, J., Chi, Y., Li, C. M., & Yu, T. (2013). Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angewandte Chemie, 52, 7800–7804.

    Article  CAS  PubMed  Google Scholar 

  40. Eda, G., Lin, Y.-Y., Mattevi, C., Yamaguchi, H., Chen, H.-A., Chen, I.-S., Chen, C.-W., & Chhowalla, M. (2010). Blue photoluminescence from chemically derived graphene oxide. Advanced Materials, 22, 505–509.

    Article  CAS  PubMed  Google Scholar 

  41. Wang, Q., Zhang, S., Zhong, Y., Yang, X.-F., Li, Z., & Li, H. (2017). Preparation of yellow-green-emissive carbon dots and their application in constructing a fluorescent turn-on nanoprobe for imaging of selenol in living cells. Analytical Chemistry, 89, 1734–1741.

    Article  CAS  PubMed  Google Scholar 

  42. Zhao, S., Lan, M., Zhu, X., Xue, H., Ng, T.-W., Meng, X., Lee, C.-S., Wang, P., & Zhang, W. (2015). Green synthesis of bifunctional fluorescent carbon dots from garlic for cellular imaging and free radical scavenging. ACS Applied Materials & Interfaces, 7, 17054–17060.

    Article  CAS  Google Scholar 

  43. Li, Z., Li, Y., Li, J., Gao, Y., & Gu, X. (2019). Synthesis and thermal properties of ethynyl phenyl azo phenol-biphenylene resin. ACS Omega, 4, 1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cui, S., Pu, S., & Liu, G. (2014). Multi-responsive photochromism of a new diarylethene with a salicylaldehyde group. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 132, 339–344.

    Article  CAS  PubMed  Google Scholar 

  45. Wang, X., Liuye, S., Ma, X., Cui, S., & Pu, S. (2023). Construction of a solid-state fluorescent switching with carbon dots and diarylethene. Dyes and Pigments, 216, 111318.

    Article  CAS  Google Scholar 

  46. Liao, B., Lv, H., Deng, X., He, B., & Liu, Q. (2017). Spiropyran-modified silicon quantum dots with reversibly switchable photoluminescence. Journal of Nanoparticle Research, 19, 265.

    Article  Google Scholar 

  47. Zhu, Z., Ding, H., Wang, Y., Fan, C., Tu, Y., Liu, G., & Pu, S. (2020). Rational design of a FRET-based ratiometric fluorescent chemosensor for detecting ClO with large Stokes based on rhodamine and naphthalimide fluorophores. Tetrahedron, 76, 131291.

    Article  CAS  Google Scholar 

  48. Liao, B., Long, P., He, B., Yi, S., Ou, B., Shen, S., & Chen, J. (2013). Reversible fluorescence modulation of spiropyran-functionalized carbon nanoparticles. Journal of Materials Chemistry C, 1, 3716–3721.

    Article  CAS  Google Scholar 

  49. Zhao, H., Kang, H., Fan, C., Liu, G., & Pu, S. (2020). A new multi-functional fluorescent mercuric ion sensor based on diarylethene with triazole-linked rhodamine B unit. Tetrahedron, 76, 131393.

    Article  CAS  Google Scholar 

  50. Karpach, P. V., Scherbovich, A. A., Vasilyuk, G. T., Stsiapura, V. I., Ayt, A. O., Barachevsky, V. A., Tuktarov, A. R., & Khuzin, A. A. (2019). Maskevich, photoinduced reversible modulation of fluorescence of CdSe/ZnS quantum dots in solutions with diarylethenes. Journal of Fluorescence, 29, 1311–1320.

    Article  CAS  PubMed  Google Scholar 

  51. Herder, M., Schmidt, B. M., Grubert, L., Pätzel, M., Schwarz, J., & Hecht, S. (2015). Improving the fatigue resistance of diarylethene switches. Journal of the American Chemical Society, 137, 2738–2747.

    Article  CAS  PubMed  Google Scholar 

  52. Cong, S., Liu, K., Qiao, F., Song, Y., & Tan, M. (2019). Biocompatible fluorescent carbon dots derived from roast duck for in vitro cellular and in vivo C. elegans bio-imaging. Methods, 168, 76–83.

    Article  CAS  PubMed  Google Scholar 

  53. Zhou, N., Zhu, S., Maharjan, S., Hao, Z., Song, Y., Zhao, X., Jiang, Y., Yang, B., & Lu, L. (2014). Elucidating the endocytosis, intracellular trafficking, and exocytosis of carbon dots in neural cells. RSC Advances, 4, 62086–62095.

    CAS  Google Scholar 

  54. Du, F., Li, J., Hua, Y., Zhang, M., Zhou, Z., Yuan, J., Wang, J., Peng, W., Zhang, L., **a, S., Wang, D., Yang, S., Xu, W., Gong, A., & Shao, Q. (2015). Multicolor nitrogen-doped carbon dots for live cell imaging. Journal of Biomedical Nanotechnology, 11, 780–788.

    Article  CAS  PubMed  Google Scholar 

  55. Cai, Y., Wei, Z., Song, C., Tang, C., Han, W., & Dong, X. (2019). Optical nano-agents in the second near-infrared window for biomedical applications. Chemical Society Review, 48, 22–37.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation of China (22263005), and the Jiangxi Provincial Natural Science Foundation (20212BAB203011, 20224ACB203006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiqiang Cui or Shouzhi Pu.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest in this work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1749 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Liuye, S., Ning, K. et al. A photo-controlled fluorescent switching based on carbon dots and photochromic diarylethene for bioimaging. Photochem Photobiol Sci 22, 2389–2399 (2023). https://doi.org/10.1007/s43630-023-00458-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00458-6

Keywords

Navigation